
Abstract

Our society is increasingly relying on digitalized, aggregated opinions of individuals to make decisions (e.g.,
product recommendation based on collective ratings). One key requirement of harnessing this ‘‘wisdom of crowd’’
is the independency of individuals’ opinions; yet, in real settings, collective opinions are rarely simple aggregations
of independent minds. Recent experimental studies document that disclosing prior collective ratings distorts
individuals’ decision making as well as their perceptions of quality and value, highlighting a fundamental
discrepancy between our perceived values from collective ratings and products’ intrinsic values. Here we present a
mechanistic framework to describe herding effects of prior collective ratings on subsequent individual decision
making. Using large-scale longitudinal customer rating datasets, we find that our method successfully captures the
dynamics of ratings growth, helping us separate social influence bias from inherent values. Leveraging the proposed
framework, we quantitatively characterize the herding effects existing in product rating systems and promote
strategies to untangle manipulations and social biases.

Introduction

In his seminal work,1 Sir Francis Galton introduced the

famous notion of ‘‘one vote, one value,’’ believing that ag-

gregating the opinions over a large population can success-

fully harness their collective wisdoms. Many studies have

since shown that indeed collective opinions of a group are

often closer to the truth than the answer of an individual to a

question.2 Today, with the explosive growth of information,

our decisions are increasingly relying on aggregated opinions

contributed by others, from product or service recommen-

dation to political elections. While one key prerequisite of

harnessing the crowd wisdom is the independency of indi-

viduals’ opinions,2 most, if not all, of the times, we are ex-

posed to others’ opinions before forming and expressing our

own. For example, we go to the theater after checking reviews

of the movie online, we download songs from the hit list, and

we purchase products or go to restaurants after research-

ing what others think about them. As a result, the markets do

not simply aggregate preexisting individual preferences, but

rather create an environment rich in social influence. Yet,

compared with the well-known social influence caused by

direct social interactions,3–6 such noninteractive social in-

fluence is more pervasive yet much less studied.

Recent studies offered convincing evidence that social

influence exerts important but counterintuitive effects on

collective judgment.7,8 Through carefully designed control

experiments in different settings, these studies demonstrate

that disclosing prior collective opinions distorts individuals’

decision making as well as their perceptions of quality and

value, creating herding that is irrational and pervasive, yet

consequential to market outcome. Despite the significance of

these results in experimental settings, there has been no

quantitative framework to model social influence and its

impact on social systems that are constantly evolving. Indeed,

models on collective intelligence, from majority voting to

collaborating filtering9–12 and crowdsourcing,13,14 all assume

independent crowds, representing a critical gap between

modeling frameworks and empirical insights.
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Here we develop a mechanistic framework to model indi-

vidual rating decisions as a function of a product’s intrinsic

quality and prior collective opinions. Using 28 million ratings

spanning over 18 years on over 1.7 million products from

Amazon15 as an exemplary case, we demonstrate that our

method successfully captures the temporal trajectories of

rating dynamics across different product categories, allowing

us to separate social biases introduced by prior ratings from

the true values inherent to products. We further show that

our framework is not only effective in detecting the presence

of social biases and gauging less biased values for any given

product, but also accurately predicts the long-term cumu-

lative growth of ratings through a

scalable estimation model only based

on early rating trajectories.

Leveraging the proposed framework,

we quantitatively characterize what

might be the herding effects existing

in product rating systems and pro-

mote new strategies in untangling

artificial manipulations and social

biases. We believe that our frame-

work is of fundamental importance

to studies of social processes and

provides significant insights toward

design of platforms that aggregate

individual opinions, from electoral

polling to market analysis to product recommendation.

Phantom of Herding Effects

We start with an empirical study on the phenomena of herding

effects using the Amazon rating datasets. Amazon adopts a

discrete 1-to-K star ratings system with 1- and K-star, re-

spectively, being the lowest and highest ratings (currently,

K = 5). Many online retailers have used similar systems. To be

succinct yet reveal the important issues, we focus on ratings

of products from four top-level categories: Books, Music,

Movies & TV, and Electronics, which cover over 72% of

Amazon’s catalog. Table 1 summarizes the statistics of this

dataset. These four categories demonstrate rather diverse

statistics. For example, the entropy16 of each product’s ratings

is defined as

�
XK

k¼ 1

NkPK
k¢¼1 Nk¢

log2

NkPK
k¢¼1 Nk¢

 !" #
(1)

where Nk denotes the number of k-star ratings; as can be

noticed in Table 1, the category-wise average entropy ranges

from 0.56 to 0.96.

We consider a product’s ratings as a temporally ordered

sequence r1, r2, r3, . . ., with ri 2 f1, 2, . . . , Kg being the ith

rating and i being its sequence number. Also, we say that the

ratings ahead of ri (r1, r2, r3, . . . , ri� 1) form its history. To

gauge the existence of herding effects in collective rating

systems, the first question we in-

tend to ask is whether these se-

quences evolve over time or they

are stationary across time. We use

Augmented Dickey–Fuller test,17 a

standard stationary test for time

series. Figure 1A depicts the cu-

mulative distribution of p-values of

all rating sequences in the dataset.

It is noticed that, for a majority of

sequences, the null hypothesis that

a unit root exists cannot be rejected,

indicating the nonstationarity na-

ture of the time series.

Many profound factors might ac-

count for the nonstationarity of a ratings sequence. For ex-

ample, the product’s perception and popularity might change

as new selections emerge; customers’ inclinations might

evolve over time10,11; early and late adopters of the product

might have different rating tendencies. Among all these fac-

tors, we are particularly interested in the temporal dynamics

attributed to history ratings.

To answer this question, we measure the dependency be-

tween history and future ratings. Specifically, let i be the

sequence number of the latest rating. We consider the frac-

tions of k-star ratings (k¼ 1, 2, . . . , 5) in history (r1, r2, r3,

. . . , ri) as one set of variable, and the next m ratings

(riþ 1, riþ 2, . . . , riþm) as another set. We measure Pearson’s

correlation coefficient between these two sets of variables by

considering all rating sequences in the dataset as samples.

Figure 1B illustrates how the correlation coefficient for dif-

ferent k (average over next m = 10 ratings) varies as the length

of ratings history increases from 10 to 250. We find that

different ratings in history exhibit fairly diverse patterns of

correlations with future ratings. For example, 5-star ratings

demonstrate strong positive correlation, while all other rat-

ings are negatively correlated with future ratings. More in-

terestingly, as indicated by the fitted curves, the magnitudes

of both positive and negative correlations increase as the

length of ratings history grows. To validate whether such

increasing correlations are caused by the evolution of aver-

age ratings tendency, we further measure the mean rating at

Table 1. Summary of Amazon Customer Rating Dataset

Product
category

Number
of products

Number
of ratings

Average
ratings

Average
entropy

of ratings

Books 929,264 12,886,488 4.271 0.666
Music 556,814 6,396,350 4.410 0.555
Movies & TV 212,836 7,850,072 3.944 0.955
Electronics 82,067 1,241,778 3.791 0.824
Total 1,780,981 28,374,688 4.253 0.673

‘‘TO GAUGE THE EXISTENCE
OF HERDING EFFECTS IN

COLLECTIVE RATING
SYSTEMS, THE FIRST

QUESTION WE INTEND TO
ASK IS WHETHER THESE

SEQUENCES EVOLVE OVER
TIME OR THEY ARE

STATIONARY ACROSS TIME.’’
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specific sequence number (Fig. 1C), finding no significant shift

of average ratings over time across all four different categories.

These observations demonstrate that ratings generation is not

an independent, homogeneous process, supporting our hy-

pothesis that rating systems do not simply aggregate indi-

vidual opinions, but create an environment that influences

subsequent ratings in a systematic manner.

While our results are in good agreement with recent experi-

mental findings on social influence,

suggesting that disclosing prior ratings

by other customers exerts pervasive

and consequential herding effects on

subsequent individual opinions, fur-

ther experiments are needed to con-

clude the extent to which the observed

influence can be attributed to herding.

Yet, as we show next, rating trajecto-

ries follow widely reproducible dy-

namical patterns, as such systematic

influence can be effectively learned

and detected from early rating histo-

ries, which can be used to predict subsequent ratings.

Dynamics of Ratings Growth

We start by identifying two fundamental factors that drive

rating trajectories.

Intrinsic quality pertains to a product’s true value. A prod-

uct’s value depends on so many intangible and subjective

dimensions that it is impossible to quantify them all. Here,

we view intrinsic quality as a collective measure capturing the

product’s value perceived by the customer community when

each customer expresses his/her opinion independently. In a

discrete 1-to-K star ratings system, we can represent a

product’s intrinsic quality as a multinomial distribution

g1, g2, . . . , gK (
PK

k¼1 gk ¼1) over 1- to K-star, with gk being

the probability density at k-star. For

mathematical convenience, we param-

eterize this multinomial distribution

with K variables l1, l2, . . . , lK ,

which satisfy gk a exp (lk) for

k 2 f1, 2, . . . , Kg.

Herding effects influence ratings

generation in a more intricate

manner. Different prior ratings can

excite, suppress, or have negligible

effects on the generation of a new

rating. Given a ratings sequence

r1, r2, r3, . . . , the first (i – 1) ratings form the history of the

ith rating ri, which we summarize as a vector xi ¼
[xi, 1, xi, 2, . . . , xi, K ]T , with xi,k being the number of k-star

ratings among these (i – 1) ratings. This setting is motivated

by the observation that Amazon displays the counts of dif-

ferent ratings in each product’s review section. We use a

general linear model to capture all possible effects xi can exert

‘‘A PRODUCT’S VALUE
DEPENDS ON SO MANY

INTANGIBLE AND SUBJECTIVE
DIMENSIONS THAT IT IS

IMPOSSIBLE TO QUANTIFY
THEM ALL.’’
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FIG. 1. (A) Cumulative distribution of p-values of Augment Dickey–Fuller test over all rating sequences in the dataset. (B) Average Pearson’s
correlation coefficient between fractions of k-star (k = 1, 2, 3, 4, 5) ratings in history and the next 10 ratings with respect to length of ratings
history. (C) Mean ratings at specific rating sequence number. Each point is the average over all ratings sequences in the same category.
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on ri (a more general model18 may further account for the

dynamically varying strength of herding effects). We use a

vector hk 2 RK for k 2 f1, 2, . . . , Kg to weigh the different

components of ratings history. Without loss of generality,

assume ri is a k-star rating. The influence of ratings history xi

on the generation of ri is given by hk(xi)/ exp (hT
k xi). More

specifically, let hk,k¢ denote the k¢th component of hk , indi-

cating how prior k¢-star ratings influence the likelihood of a

new rating being k-star. When hk,k¢ > 0, then preceding k¢-star

ratings excite the generation of new k-star rating ri; when

hk,k¢ < 0, prior k¢-star ratings suppress the generation of ri;

while if hk,k¢ = 0, prior k¢-star ratings have negligible effects on

the occurrence of ri.

Combining these two factors, we can write the probability

that the ith rating ri is k-star conditional on its ratings history

xi as follows:

Pr(ri ¼ kjxi)¼ gkhk(x i) / exp (lk þ hT
k xi) (2)

with the constraint that
PK

k¼ 1 Pr(ri ¼ kjxi)¼ 1.

It is noted that this model does not include the effects of

time-specific or user-specific rating tendency for two main

reasons. First, no significant shift of average rating tendency

across time is observed in the current dataset (Fig. 1C).

Second, we view intrinsic quality as a collective measure of a

product’s perceived value irrespective of individual custom-

ers’ rating tendency.

In this model, both flkgK
k¼ 1 and fhkgK

k¼ 1 are variables,

which we estimate from available training data following the

maximum likelihood principle (see section Inference of

Model Parameters in Supplementary Data, available online

at www.liebertpub.com/big). The straightforward solution to

estimating parameters using ratings of multiple products is

to directly fit the model parameters to ratings of each

product individually following the procedure sketched in the

section Inference of Model Parameters in Supplementary

Data. However, this can easily lead to overfitting. Instead, we

use ratings of all products in each category to train category-

level parameters fhkgK
k¼ 1. Then, for each product, we fix

fhkgK
k¼1 and focus on learning product-level parameter

flkgK
k¼1. The optimization procedure is similar to the sec-

tion Inference of Model Parameters in Supplementary Data,

except that at every iteration we need to update flkgK
k¼ 1 for

each product, and update fhkgK
k¼ 1 for all products in each

category.

To test the validity of the proposed model, we apply it to

predict a product’s future ratings based on its current ratings

history. Recall that xi represents the summary of the first (i –

1) ratings, which also corresponds to the history of the ith

rating. The transition probability from xi to xi + 1 is described

by the rule below (ek is a 1-of-K vector with the kth element

being 1 and the rest elements being 0):

Pr(xiþ 1¼ xi)þ ekjxi) / exp (lk þ hT
k x i) (3)
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FIG. 2. (A) Prediction accuracy (root mean square error, RMSE) of proposed model and baseline model with respect to fraction of ratings
history used for training in four product categories. (B) Comparison of actual and predicted ratings growth trajectories. Based on the first 100
ratings of a product from Movies & TV, the proposed model predicts the growth of the next 200 ratings.
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This transition rule essentially specifies a nonstationary

Markov chain in which both the state space and the transition

probability change from step to step. Given the current rat-

ings summary xc, we apply Monte Carlo methods19 to predict

the ratings summary xc + t after including the next t new ratings

(see the section Prediction Model in Supplementary Data).

We partitioned each ratings sequence into two subseries as

the training set and testing set, respectively. In addition to the

proposed model, for comparison purpose, we introduce a

baseline model that predicates future ratings using the aver-

age of past ratings (moving average). We measure prediction

accuracy using root mean square error (RMSE), which is

defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

r2testcase (r � ~r)2=jtestcasej
q

, where r and ~r , re-

spectively, represent the actual and predicated rating. In the

experiments, we varied the length of training subseries (as the

fraction of each ratings sequence) and measured the predic-

tion accuracy of the rest ratings by both models.

Across all product categories, the proposed model signifi-

cantly outperforms the baseline model in predicting future

ratings growth (Fig. 2A), even when only limited data (e.g.,

25% of ratings history) is available for training. This is at-

tributed to two main reasons. First, our model definition

accounts for a wide range of dynamical patterns of herding

effects (Eq. 2). Second, the proposed model leverages the

rating data of all products in a same category to fit category-

level parameters h, which effectively prevents overfitting. In

contrast, the baseline model relies solely on the overall sta-

tistics of ratings history of each product, which might have

not emerged when only limited training data is available. It is

also noticed that the prediction performance varies slightly

with product category, indicating varying unpredictability

across different product categories. To visualize the predica-

tion of our proposed model, the predicated average rating

growth trajectory for a randomly selected product is illus-

trated in Figure 2B, in contrast to its real ratings growth

trajectory, indicating a close match. Overall, the verified

FIG. 3. Characteristics of category-level parameters h. Here yk,k¢ measures how prior k¢-star ratings influence the likelihood of a future rating
being k-star, positive and negative value indicating exciting and suppressing effects, respectively.
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predictive power of the proposed model indicates that it

faithfully captures the dynamics of ratings growth.

Applications

The proposed model enables us to answer a set of funda-

mental questions.

The first question is: ‘‘What do the herding effects look like?’’

We conducted a quantitative study on the herding effects

observable in real customer ratings data by fitting the model

to product ratings in each category and examining parame-

ters fhkgK
k¼ 1. Recall that these parameters describe the mu-

tual influence between ratings at different levels (Eq. 2),

specifically, with hk,k¢ specifying how prior k¢-star ratings may

positively excite or negatively suppress the generation of new

k-star ratings. While each product category has its unique

traits, a set of common patterns is observed (Fig. 3). First,

high ratings (e.g., 5-star) tend to stimulate new high ratings

while suppressing the generation of low ratings. Second, high

ratings are more impactful than low ratings in influencing

other ratings. This is consistent with the observations that we

have discussed in Figure 1B. These observations are also

consistent with the finding of asymmetric herding effects of

positive and negative prior opinions in other domains.7

The second question is: ‘‘What is the intrinsic rating per-

taining to the true quality of a product if we can factor out

the herding effects?’’ Recall that the model (Eq. 2) comprises

two additive components, namely, the intrinsic quality

(fgkgK
k¼ 1) and the herding effects (fhkgK

k¼ 1). Therefore, we

can ‘‘de-bias’’ the collective ratings by only keeping the

component attributed by intrinsic quality fgkgK
k¼ 1. To un-

derstand the issue of how the simple aggregated (or extrinsic)

rating of a product deviates from its true quality, we mea-

sured for each product the absolute difference between its

intrinsic and extrinsic average ratings. Across all four cate-

gories, over 50% products have this difference above 0.5 (Fig.

4), indicating a significant discrepancy between our perceived

values from collective ratings and products’ true values.

Endowed with the capability of exposing products’ intrinsic

ratings, we can also compare the true

quality of two products without be-

ing misguided by their extrinsic rat-

ings. We randomly selected two

sample products, with significantly

different extrinsic ratings (with dif-

ference around 0.9) (Fig. 5). Their

intrinsic ratings are indeed fairly

similar (with difference less than 0.2)

after factoring out the herding effects.

The reason is explained by the fact

that the first sample product experiences a sequence of low

ratings at the early stage of its ratings history, which con-

siderably changes the dynamics of its ratings growth. The

proposed model enables us to maximally de-bias this type of

influence caused by the herding effects.

The third question is: ‘‘Given a product’s current ratings, how

would its future ratings be herded if we exerted certain ar-

tificial manipulation?’’ The Markovian nature of the pro-

posed model enables us to easily perform such what-if

analysis. Specifically, given the current ratings summary xc,

we may arbitrarily change xc to another summary x ¢
c to reflect

any artificial conditions we wish to inject. Staring from this

new state x¢
c and applying the prediction method (Eq. 3), we

can then gauge the consequences of the injected conditions.

Such predictive analysis is valuable for a range of applica-

tions, including market profitability estimation, budgeted

advertising, and fraudulent manipulation detection. For ex-

ample, before deciding whether to invest in a promotion

campaign for a product, market

analysts may wish to estimate the

long-term influence of a short burst

of high ratings due to the promo-

tion. We randomly selected two

sample products, respectively, from

the categories of Music and Movies

& TV, with fairly close average ex-

trinsic ratings thus far. Now, as-

suming that the promotion takes

effect, we injected 50 artificial 5-star

ratings into their rating histories. The prediction by the

proposed model tells us (Fig. 6) that, while both products
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PERFORM SUCH WHAT-IF

ANALYSIS.’’
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experience similar short-term bursts in their popularity, in

the long run the promotion has much longer-lasting influ-

ence on the sample product from the category of Movies &

TV. This provides valuable intelligence for the decision

making of market analysts.

Additional Related Work

There have been a number of interesting studies into the

semantics of collective opinions, such as analyzing the text

and social aspects of product reviews. While they are useful

for review spam detection,20 customer sentiment analysis,21,22

product recommendation,23 and more, insights extracted

from semantic features are, however, not mechanistic, and

hence not capable of projecting the full rating trajectories.

Nevertheless, these studies are complementary to our work,

in a sense that the useful semantic features learned can be

integrated into our model in the form of prior belief of model

parameters. Another line of research that is relevant to this

work is collaborative filtering (CF),9–12 a technique used by

recommender systems to make prediction (filtering) about a

customer’s interests by collecting preferences from many

customers (collaborating). The underlying assumption is that

a customer often gets the best recommendations from cus-

tomers with similar preferences (as reflected in their past

selections). CF is a customer-centric method, attempting to

model each customer’s specific preferences. Our work differs

in that it is a product-centric method, attempting to statis-

tically capture the temporal dynamics of each product’s rat-

ings growth without knowledge about whom will give future

ratings. Nevertheless, incorporating available text-, social-, or

customer-specific information into the ratings growth model

would be a promising future direction.

Conclusions

In this article we presented a mechanistic modeling framework

for the growth dynamics of online product ratings, which

explicitly accounts for the herding effects of prior customer

opinions. Using Amazon customer ratings datasets, we dem-

onstrated its efficacy in capturing the dynamics of ratings

growth, quantifying social influence, and de-biasing collective
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ratings, and further performing what-if analysis against artifi-

cial manipulations. Leveraging the proposed framework, we

quantitatively characterized the herding effects existing in

product rating systems and promoted strategies to untangle

artificial manipulations and social biases. This framework is

not limited to product rating systems. Indeed, its mechanistic

nature makes it also applicable for modeling the herding effects

in other domains where social influence plays a role, from

crowdsourcing and recommender systems to electoral polling.
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