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Abstract

With the wealth of data provided by a wide range of high-throughout mea-

surement tools and technologies, statistical physics of complex systems is en-

tering a new phase, impacting in a meaningful fashion a wide range of fields,

from cell biology to computer science to economics. In this dissertation, by

applying tools and techniques developed in statistical physics, I present some

of my contributions to the emerging field of Big Data in three distinct but

related settings. First, we investigate long-term predictability of scientific

impact. By deriving a mechanistic model for the citation dynamics of indi-

vidual papers, we demonstrate that citation histories of all papers follow the

same universal temporal pattern, helping us uncover the basic mechanisms

that govern scientific impact. Second, we study the contextual factors that

affect information spreading processes. We find that the social and organi-

zational context significantly impacts to whom and how fast people forward

information. Yet the structures within spreading processes can be well cap-

tured by a simple stochastic model, indicating surprising independence of

context. Lastly, we study the mobility patterns and social interactions of

mobile phone users, demonstrating the possibility of using the similarities

between individual trajectories to predict social ties.
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Chapter 1

Introduction

Over the past few years, we have witnessed a cross-disciplinary shift. Sup-

plied by a wide range of high-throughput tools and technologies, a wealth of

data are fueling rapid advances in a number of research fields, from physics

and cell biology to computer science and economics. Nowhere are these ad-

vances more apparent than in the study of social systems. Indeed, today

just about everything we do is recorded and saved in a database somewhere

around the globe. Every time we make a phone call, when, where, and whom

we call is carefully catalogued for billing purposes by our mobile provider. So

does our credit card company, who has every incentive to save as many de-

tails as they can about each swipe of our card. While we often do not realize

it, we are constantly under various microscopes that transform every pieces

of our life into bits and securely store them in data centers. In addition, with

the development of Web 2.0, we ourselves—no matter what the occupation
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is—have uniformly become the most avid contributors to this data windfall.

Every YouTube videos we watched were originally uploaded by our fellow

web surfers. Our news feed on social media and social networking sites, like

Facebook and Twitter, are generated from updates by our ‘friends’ on that

site. Wikipedia, the largest encyclopedia, is created collaboratively by vol-

unteers. The list goes on, and the result is a data revolution, now commonly

called, Big Data.

These data offer researchers access to patterns of human behavior at a

scale and level of details previously unimaginable, representing a huge op-

portunity for research. The fact that statistical physicists have played an

important role in this inherently interdisciplinary field should be of little

surprise. Indeed, with its decades of experiences in critical phenomena, sta-

tistical physics has much to offer, particularly in understanding, quantifying

and modeling the dynamics and properties of a large number of individu-

als. Its approach to these seemingly complex problems in social systems can

be simplistic and sometimes crude—by viewing humans as atoms—yet, its

occasional success in doing so underlines the concept of universality in crit-

ical phenomena that the macroscopic behavior of a system is independent

of microscopic details. On the other hand, while we are inundated by the

Big data with its unprecedented scale and much finer resolution, we are also

handed a powerful experimental apparatus to challenge our existing models,

explore new tools and frameworks, and lead ourselves to areas that we could

not venture before.
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In this dissertation, by applying tools and techniques developed in sta-

tistical physics, I present some of my contributions to the emerging field

of Big Data in three distinct but related settings, with the hope to high-

light the opportunities and promises offered by Big Data. For instance, we

shall see some of the first evidence of predicting social relationships based on

spatiotemporal information, thanks to the availability of large-scale datasets

that simultaneously capture social interactions and human movements on a

national scale (Ch. 4). The predictive power was made possible by apply-

ing the correlation function in a spin system to individual trajectories. We

shall see the power of combining and matching various sources of Big Data,

helping us uncover the contextual factors that affect information spreading

processes on both global and local scale, where a simple stochastic model

yields surprising agreement with the global properties of the system (Ch. 3).

We shall also see an example of agent-based modeling from first principles,

in the wake of high resolution longitudinal datasets, allowing us to document

a remarkable amount of regularity in a system that was perceived as noisy

and unpredictable (Ch. 2).

The rest of this dissertation is organized as follows.

In Chapter 2, we present a mechanistic model (MiC) that captures long-

term scientific impact. An ability to accurately assess the long-term impact

of a scientific discovery has implications from science policy to individual re-

ward. Yet, the documented lack of predictability of citation based measures

frequently used to gauge impact, from impact factors to short-term citations,

12



raises a fundamental question: is there long-term predictability in citation

patterns? In this chapter we test the hypothesis that impact is a collec-

tive measure that reflects the research community’s response to a discovery,

hence it follows quantifiable patterns. We derive a mechanistic model for the

citation dynamics of individual papers, allowing us to collapse the citation

histories of papers from different journals and disciplines into a single curve,

indicating that all papers follow the same universal temporal pattern. The

observed patterns not only help us uncover the basic mechanisms that govern

scientific impact, but also offer reliable measures of influence with potential

policy implications.

Chapter 3 asks a simple question: what are the factors that affect infor-

mation spreading processes? Information spreading processes are central to

human interactions. Despite recent studies in online domains, little is known

about factors that could affect the dissemination of a single piece of informa-

tion. In this chapter we address this challenge by combining two related but

distinct datasets, collected from a large scale privacy-preserving distributed

social sensor system. We find that the social and organizational context sig-

nificantly impacts to whom and how fast people forward information. Yet

the structures within spreading processes can be well captured by a simple

stochastic branching model, indicating surprising independence of context.

Our results build the foundation of future predictive models of information

flow and provide significant insights towards design of communication plat-

forms.
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In Chapter 4, we turn our attention to the interplay between social net-

work and human movements. Our understanding of how individual mobility

patterns shape and impact the social network is limited, but is essential for

a deeper understanding of network dynamics and evolution. This question

is largely unexplored, partly due to the difficulty in obtaining large-scale

society-wide data that simultaneously capture the dynamical information on

individual movements and social interactions. Here we address this challenge

by tracking the trajectories and communication records of 6 Million mobile

phone users. We find that the similarity between two individuals’ move-

ments strongly correlates with their proximity in the social network. We

further investigate how the predictive power hidden in such correlations can

be exploited to address a challenging problem: which new links will develop

in a social network. We show that mobility measures alone yield surprising

predictive power, comparable to traditional network-based measures. Fur-

thermore, the prediction accuracy can be significantly improved by learning

a supervised classifier based on combined mobility and network measures.

We believe our findings on the interplay of mobility patterns and social ties

offer new perspectives on not only link prediction but also network dynamics.

These three chapters (Ch. 2–4) are written in a self-contained manner,

with the hope that readers who are of interest to any particular topic could

“get to the meat” without having to consult the other chapters.
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Chapter 2

Quantifying Long-term

Scientific Impact

Of the many tangible measures of scientific impact one stands out in its

frequency of use: citations [42, 28, 90, 54, 68, 117, 58, 86, 39]. The reliance

on citation based measures, from the Hirsch index [54] to the g-index [38],

from impact factors [42] to eigenfactors [40], and on diverse ranking based

metrics [21, 87], lies in the (often debated) perception that citations offer a

quantitative proxy of a discovery’s importance or a scientist’s standing in the

research community. In this debate it is often lost the fact that our ability to

foresee lasting impact based on citation patterns has well-known limitations:

(i) The impact factor (IF) [42], conferring a journal’s historical impact

to a paper, is a poor predictor of a particular paper’s future citations [93]:

papers published in the same journal a decade later acquire widely different
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number of citations, from one to thousands (Fig. 2.1A).

(ii) The number of citations [28] collected by a paper strongly depends

on the paper’s age, hence citation based comparisons favor older papers and

established investigators. It also lacks predictive power: a group of papers

that within a five year span collect the same number of citations are found

to have widely different long-term impact (Fig. 2.1B).

(iii) Paradigm changing discoveries have notoriously limited early im-

pact [90], precisely because the more a discovery deviates from the current

paradigm, the longer it takes to be appreciated by the community [64]. In-

deed, while for most papers their early and long-term citations correlate,

this correlation breaks down for discoveries with most long-term citations

(Fig. 2.1C). Hence, publications with exceptional long-term impact appear

to be the hardest to recognize based on their early citation patterns.

(iv) Comparison of different papers is confounded by incompatible public-

ation/citation/acknowledgement traditions of different disciplines and jour-

nals.

These limitations not only affect science policy, but also probe our un-

derstanding of complex evolving systems [24, 19, 107, 31, 17], prompting us

to ask, is there long-term predictability in such short-term measures as early

citation patterns? To be sure, long-term cumulative measures like the Hirsch

index have documented predictable components, that can be extracted via

data mining [54, 1]. Yet, given the myriad of factors involved in the recogni-

tion of a new discovery, from the work’s intrinsic value to timing, chance and

16



the publishing venue, finding regularities in the citation history of individual

papers, the minimal carriers of a scientific discovery, remains an elusive task.
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Figure 2.1: Characterizing citation dynamics. (A) Distribution of the
cumulative citations ten years after publication (c10) for all papers published
in Cell, PNAS, and Physical Review B (PRB) in 1990. (B) Citation history
of all papers shown in (A) that acquired 50 citations 5 years after publication,
illustrating the different long-term impact despite their equal early impact.
(C) Average number of citations acquired two years after publication (c2) for
papers with the same long-term impact (c30), indicating that for high impact
papers (c30 ≥ 400, shaded area) the early citations underestimate future
impact. Inset: Distribution of citations 30 years after publication (c30) for
PR papers published between 1950 and 1980. (D) Yearly citation ci(t) for 200
randomly selected papers published between 1960 and 1970 in the Physical
Review (PR) corpus. The color code corresponds to each papers’ publication
year.

The difficulty in identifying reproducible patterns in citation histories is
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well illustrated by the citation patterns of papers extracted from the Physical

Review corpus (Fig. 2.1D), consisting of 463,348 papers published between

1893 and 2010 and spanning all areas of physics [90, 69, 88]. The fat tailed na-

ture of the citation distribution 30 years after publication indicates that while

most papers are hardly cited, a few do have exceptional impact (Fig. 2.1C

inset) [89, 28, 9, 90, 86]. This impact heterogeneity, coupled with widely

different citation histories (Fig. 2.1D), suggests a lack of order and hence

lack of predictability in citation patterns. Yet, as we show in this chapter,

this lack of order in citation histories is only apparent, as citations follow

widely reproducible dynamical patterns that span research fields. Quanti-

fying these patterns allow us to derive from first principles more accurate

impact measures than the currently used heuristic quantities.

2.1 Data Description

To demonstrate the practical relevance of our study, we compiled two citation

datasets.

2.1.1 Physical Review Corpus

The Physical Review (PR) dataset consists of all papers published by journals

within the Physical Review corpus from 1893 to 2010 (Table 2.1). The data

is available by request through the APS website. The corpus is comprised

of over 450,000 papers with citations. The data is unique in its longitudi-
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Table 2.1: Statistics of PR Corpus.

Journal Start Year End Year # Papers
Physical Review (Series I) 1893 1912 1,469
Physical Review 1913 1969 47,941
Reviews of Modern Physics 1929 2009 2,926
Physical Review Letters 1958 2009 95,516
Physical Review A 1970 2009 53,655
Physical Review B 1970 2009 137,999
Physical Review C 1970 2009 29,935
Physical Review D 1970 2009 56,616
Physical Review E 1993 2009 35,944
Physical Review Special Topics -
Accelerators and Beams 2002 2009 1,257
Physical Review Special Topics -
Physics Education Research 2005 2009 90

nal nature, spanning over 100 years. Therefore, it is ideal for understanding

the long term aspects of citation histories and impact. Yet, it has two ma-

jor limitations: (1) It is discipline specific, containing physics papers only.

Therefore, the results obtained using this data need to be checked on data

pertaining to other disciplines. (2) The data includes only internal citations.

Hence, the Web of Science citations of each paper are higher than contained

in this data. Such incompleteness introduces a systematic undercount of

the impact of interdisciplinary papers. Hence we systematically validate our

results on Web of Science data.
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2.1.2 Web of Science

To correct for the limitations of the Physical Review corpus and to test the

generality of our results, we also downloaded papers and citations from Web

of Science database from Thomson Reuters. This dataset indexes citations

using six major databases with comprehensive coverage. Thus it automati-

cally solves limitation (2). To address limitation (1), we selected 12 journals

based on their reach and impact (Table 2.2). They include general audience

journals, like Nature, Science, and Proceedings of the National Academy of

Sciences (PNAS ); leading journals within a certain discipline, like Cell, New

England Journal of Medicine (NEJM ), Physical Review Letters (PRL); and

review journals, like Reviews of Modern Physics (RMP). We downloaded all

papers published by these journals in three different years (1990, 1995, 2000),

and all citations collected by each of these papers until 2011.

To test the mechanism behind the temporal changes in impact factor of

Cell and NEJM, we also downloaded all papers published by these journals

from 1995 to 2005 and their citations. Web of Science only provides pub-

lication year of papers published prior to 1985, not publication date. This

prevents us from accurately (day resolution) estimating the parameters for

papers published before 1985. This limitation is corrected by the excellent

longitudinality of the PR corpus.
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2.2 Empirical Observations

Besides the results described in Fig. 2.1, there are rather robust characteris-

tics for a citation system. In this section, we take PR dataset as an example

and outline some major empirical observations.

Explosive Growth of Publications
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Figure 2.2: The number of papers published each year in the PR corpus.
Inset: cumulative number of papers N (t) published up to year t.

The number of scientific publications grows exponentially, a pattern first

pointed out by Price in 1963 [27]. Since then, various groups have shown

that this pattern not only holds for the overall scientific enterprise, but also

within each discipline [32, 101, 13]. We show in Fig. 2.2 the number of

papers published in each year in the PR corpus. The inset of Fig. 2.2 gives a

cumulative view, i.e., total number of papers published up to a certain year,

on a log-linear scale. Figure 2.2 is in good agreement with previous findings
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[13] that the number of papers published each year increases exponentially, in

analogy to Moore’s law describing the development of technology, indicating

that

N (t) ∼ exp(βt), (2.1)

where β = (17year)−1 for PR corpus. Therefore the number of papers in-

creases by 2.73 times after 17 years, or equivalently doubles every 17×ln(2) =

11.8 years.

The ‘Jump-decay’ Pattern

Despite the exponential growth of the system, the average number of citations

c(t) ≡ ci(t) of all papers at time t after publication follows a distinct ‘jump-

decay’ pattern, indicating that a paper’s main impact comes in the first two

years after publication and diminishes over time (Fig. 2.3A) [28].

A B C

Figure 2.3: (A) Average citations for papers published in same year. (B)
Citation dynamics for all papers published by PR in 1964. Four papers are
highlighted for illustration. (C) Average annual citations for papers with the
same cumulative citations after 30 years c30.
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At the same time ci(t) hides a remarkable diversity in individual cita-

tions histories. To illustrate this we show the citation history of all papers

published in 1964 (Fig. 2.3B), finding that while most obey the ‘jump-decay’

pattern (blue), a few reach their peak years after publication (magenta), yet

others attract a constant number of citations over decades (green) and some

continue to acquire an increasing number of citations even 30 years after their

publication (red). To see if these differences correlate with long term impact,

we grouped papers based on their total number of citations after 30 years,

c30 ≡
∑30

t=1 ci(t), measuring the shape of ci(t) for each c30 group (Fig. 2.3C).

We find that the higher is a paper’s early impact (c2), the higher is its long-

term impact (c30), a relationship that holds for all but the highest impact

papers (Fig. 2.1C). Indeed, papers with c30 ≥ 1000 have limited early impact

(c2), suggesting these exceptional long-term impact papers (about 0.01% of

all) are the hardest to foresee based on their short term citation pattern.

2.3 Minimal Citation Model (MiC)

Next we turn our attention to modeling the citation dynamics of individ-

ual papers. In this section, we present a minimal citation (MiC) model,

that captures all known quantifiable mechanisms that affect citation histo-

ries. We will then show that MiC, although relying on minimal assumptions,

accurately captures the citation dynamics of individual papers, revealing a

remarkable degree of regularity in citation histories.
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2.3.1 Three Assumptions

We start by identifying three fundamental mechanisms that drive the citation

history of individual papers:

A) Preferential attachment

Figure 2.4: Empirical validation of preferential attachment. Attach-
ment rate measures the likelihood for new papers published in different years
(color coded) to cite an old paper with ct citations. That is, for each year,
ct measures the citations of each paper before this year, and attachment
rate measures the average number of times each paper with ct citations was
cited in this year. The linearity of the curves offer evidence for preferential
attachment.

Preferential attachment captures the well-documented fact that highly

cited papers are more visible and are more likely to be cited again than less-

cited contributions [9, 90, 17, 94]. Accordingly a paper i’s probability to
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be cited again is proportional to the total number of citations ci the paper

received previously. To document the presence of preferential attachment in

our dataset, we follow the methodology reported in [90] (Fig. 2.4). Attach-

ment rate measures the likelihood for a paper with ct citations to get cited

by a new paper. We measured this for different years (color coded). For each

year, we first count the citations of each paper before this year, and then

measure the number of times each paper with ct citations was cited in this

year. The linearity of the curves offer evidence for preferential attachment.

B) Aging

Aging captures the fact that new ideas are integrated in subsequent work,

hence each paper’s novelty fades with time [79, 30, 108]. The resulting long

term decay is best described by a log-normal survival probability. This tem-

poral relaxation function P (∆ti) can be measured directly from the real data.

Given that a paper’s citation is driven by three independent forces, that are

difficult to separate from each other, we need to control the influence of these

factors, isolating the temporal decay. This is similar to measuring preferen-

tial attachment from empirical data, where one keeps a constant time window

and looks at the growth of degrees as a function of existing degree [90]. To

achieve this we should group papers with the same fitness (η) and cumulative

citations (ct), and look at the time when they are cited again. But we do not

know η beforehand. Moreover, each paper is likely characterized by different

µ and σ parameters in (2.2). Therefore, by aggregating different papers, we
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will measure a superposition of different temporal relaxation functions. We

therefore selected papers published between 1950 and 1960 in the PR corpus

with fixed cumulative citations c (i.e., controlling for c, publication time and

IF), and tracked the moment when their citations changed from c to c + 1.

We then measured ∆t, i.e. time between their publication and when c→ c+1

took place.

Figure 2.5 shows both P (ln ∆t | c) and P (∆t | c) for fixed c = 10 and c =

20, finding that the relaxation function is best approximated by a lognormal

function

P (∆t) =
1√

2πσ∆t
exp

(
−(ln ∆t− µ)2

2σ2

)
. (2.2)

Indeed, a lognormal distribution naturally emerges in multiplicative pro-

cesses, frequently used to model the temporal relaxation function in diverse

settings, from survival times after cancer diagnosis [14] and latency periods

of diseases [92] to the duration of marriages [85] and length of both spoken

and written conversations [114, 52]. Theoretically, we obtain a lognormal

distribution if the relaxation time ∆t is a product of independent, identical

distributed random variables {xi}, ∆t =
n∏
i

xi (equivalently, ln ∆t =
n∑
i

lnxi

converges to a normal distribution due to the central limit theorem). Such

multiplicative processes often result from independent decision processes

[84, 105]. Similar mechanisms are likely at work in the case of citations:

a decision to cite a paper involves balancing many different factors, from

appropriateness to novelty, relevance and even citation limits, each of which
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Figure 2.5: Empirical validation of the lognormal decay (2.2) (a)
P (ln ∆t) when papers change from 10 citations to 11 citations. The dashed
line corresponds to the best gaussian fitting. (b) Same as (a) but for P (∆t).
Dashed line corresponds to the best lognormal fitting (µ = 7.85 and σ =
1.01). Here ∆t is measured in unit of years. (c) P (ln ∆t) when papers
change from 20 citations to 21 citations. The dashed line corresponds to
the best gaussian fitting. (d) Same as (c) but for P (∆t). The dashed line
corresponds to the best lognormal fitting (µ = 8.29 and σ = 0.93).

may be approximated as an independent event with random probability, re-

sulting in a random latent waiting time. The final decision to cite requires us

to satisfy all these individual conditions, best described by a multiplicative

process. This argument offers an intuitive explanation for the origin of the

observed lognormal relaxation time. More models that generate lognormal
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relaxation times are reviewed in Ref. [103].

C) Fitness

Fitness, ηi, captures the inherent differences between papers, accounting for

the perceived novelty and importance of a discovery [12, 18, 31]. Novelty and

importance depend on so many intangible and subjective dimensions that it

is impossible to objectively quantify them all. Here we bypass the need to

evaluate a paper’s intrinsic value and view fitness ηi as a collective measure

capturing the community’s response to a work. As we show below, ηi can be

extracted from a paper’s citation history.

2.3.2 Solving the Model

In the proposed model, the total number of papers N grow exponentially

as (2.1), and every new published paper has m = 30 citations to existing

papers. Combining A–C, we write the probability that paper i is cited at

time t after publication as

Πi(t) ∼ ηici(t)Pi(t). (2.3)

Hence the time evolution of the expected number of citations cti satisfies

dcti
dN

=
Πi∑N
i=1 Πi

. (2.4)
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Combining (2.3-2.4) with Eq. (2.1) leading to ∆ti = t− ti = β−1 ln(N/i),

we obtain

dci
dN

= m
ciηiPt(β

−1 ln(N/i))∑N
i=1 ciηiPt(β

−1 ln(N/i))
. (2.5)

Assuming ci = m(f(ηi,∆ti)− 1), we have

df(ηi,∆ti)

d∆ti
= β

ηif(ηi,∆ti)Pt(∆ti)

A
, (2.6)

with the initial condition f(ηi, 0) = 1, where the normalization constant

A ≡ lim
N→∞

N−1

〈
N∑
i=1

ηiPt(β
−1 ln(N/i))f(ηi, β

−1 ln(N/i))

〉

= lim
N→∞

〈∫ N

1

ηiPt(β
−1 ln(N/i))f(ηi, β

−1 ln(N/i))d(i/N)

〉
= β

∫
dηρ(η)

∫ ∞
0

ηPt(t
′)f(η, t′)e−βt

′
dt′.

(2.7)

The solution of Eq. (2.6) is

f(ηi,∆ti) = e
β
A
ηi
∫∆ti
0 Pt(t′)dt′ , (2.8)

thus

c∆ti
i = m

(
e
β
A
ηi
∫∆ti
0 Pt(t′)dt′ − 1

)
, (2.9)

where the constant A can be calculated from

β

∫
ρ(η)dη

∫ ∞
0

exp

(
−βt+

β

A
η

∫ t

0

Pt(t
′)dt′

)
dt = 2. (2.10)
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Plugging Eq. (2.2) into Eq. (2.9), we get

cti = m

(
e
β
A
ηiΦ

(
ln t−µi
σi

)
− 1

)
, (2.11)

where Φ(x) is the cumulative normal distribution

Φ(x) = Φ(x) ≡ (2π)−1/2

∫ x

−∞
e−y

2/2dy. (2.12)

As β and A are system wide parameters, we use λi ≡ ηiβ/A the rela-

tive fitness for each paper i, arriving at Eq. (3) that describes the citation

dynamics of paper i:

cti = m

(
e
λiΦ

(
ln t−µi
σi

)
− 1

)
, (2.13)

Equation (2.13) represents a minimal citation (MiC) model, that captures

all known quantifiable mechanisms that affect citation histories. It predicts

that the citation history of paper i is characterized by three fundamental

parameters: the relative fitness λi ≡ ηiβ/A, capturing a paper’s importance

relative to other papers; the immediacy µi, governing the time for a paper to

reach its citation peak and the longevity σi, capturing the decay rate. Using

the rescaled variables t̃ ≡ (ln t − µi)/σi and c̃ ≡ ln(1 + cti/m)/λi, we obtain

our main result,

c̃ = Φ(t̃), (2.14)
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predicting that each paper’s citation history should follow the same universal

curve Φ(t̃) if rescaled with the paper-specific (λi, µi, σi) parameters. Given

the obvious diversity of citation histories (Fig. 2.1D), this prediction is some-

what unexpected.

2.3.3 Maximum Likelihood Estimation of Model Pa-

rameters

In order to test how well MiC matches empirical data, we need to estimate

the best (λi, µi, σi) parameters for each individual paper i given its citation

history. We show in this section that this can be done by considering a

non-homogeneous stochastic process, with the events corresponding to the

arrival of individual citations. Imagine a stochastic process {x(t)} where x(t)

represents the number of events by time t, satisfying

Prob(x(t+ h)− x(t) = 1) = λ0(x, t)h+O(h), (2.15)

where λ0(x, t) is a time dependent rate parameter. Given an empirically

observed set of N events {ti} within the time period [0, T ], where ti indicates

the moment when the paper gets cited the ith time, the likelihood that a

paper’s citation dynamics follows the model can be evaluated by the log-
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likelihood function

lnL =
N∑
i=1

ln (λ0(i− 1, ti))−
∫ T

0

λ0(x(t), t)dt

=
N∑
i=1

ln (λ0(i− 1, ti))−
N∑
i=0

∫ ti+1

ti

λ0(i, t)dt.

(2.16)

From Eq. (2.6), we have

λ0(x, t) =
λ(x+m)√

2πσt
exp

(
−(ln(t)− µ)2

2σ2

)
(2.17)

and ∫
λ0(x, t)dt = λ(x+m)Φ

(
ln(t)− µ

σ

)
. (2.18)

Combining Eqs. (2.16) and (2.18), we find

lnL = N lnλ+
N∑
i=1

ln(i+m− 1) +
N∑
i=1

ln (P (ti))

− λ
N∑
i=0

(i+m)

[
Φ

(
ln(ti+1 − t0)− µ

σ

)
− Φ

(
ln(ti)− µ

σ

)]

= N lnλ+
N∑
i=1

ln(i+m− 1) +
N∑
i=1

ln (P (ti))

− λ(N +m)Φ

(
ln(T )− µ

σ

)
+ λ

N∑
i=1

Φ

(
ln(ti)− µ

σ

)
.

(2.19)
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After the change of variables l̂ = (lnL)/N and m̂ = m/N , we have

l̂ = lnλ+ 〈ln((i− 1)/N + m̂)〉+

〈
lnP (ti) + λΦ

(
ln(ti)− µ

σ

)〉
− λ(1 + m̂)Φ

(
ln(T )− µ

σ

)
.

(2.20)

As the goal is to maximize lnL, which is the same as maximizing l̂ (2.20),

we can obtain the set of parameters that best capture a paper’s citation

records (λ∗, µ∗, σ∗),

(λ∗, µ∗, σ∗) = arg maxλ,µ,σ l̂(λ, µ, σ), (2.21)

or

∂l(λ∗, µ∗, σ∗)

∂λ∗
= 0

∂l(λ∗, µ∗, σ∗)

∂µ∗
= 0

∂l(λ∗, µ∗, σ∗)

∂σ∗
= 0.

(2.22)

The first equation in (2.22) leads to

λ∗ =

[
(1 + m̂)Φ

(
ln(T )− µ∗

σ∗

)
−
〈

Φ

(
ln(ti)− µ∗

σ∗

)〉]−1

. (2.23)
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and the rest two are〈
ln(ti)− µ∗

σ∗
− λ∗PG

(
ln(ti)− µ∗

σ∗

)〉
+ λ∗(1 + m̂)PG

(
ln(T )− µ∗

σ∗

)
= 0〈

ln(ti)− µ∗

σ∗

(
ln(ti)− µ∗

σ∗
− λ∗PG

(
ln(ti)− µ∗

σ∗

))〉
+ λ∗(1 + m̂)

ln(T )− µ∗

σ∗
PG

(
ln(T )− µ∗

σ∗

)
= 1,

(2.24)

where PG(x) ≡ (2π)−1/2e−x
2/2 is the standard normal distribution.

By solving Eqs. (2.23–2.24) numerically, we obtained the parameter set

(λ∗, µ∗, σ∗) for each paper based on its historical citation pattern within the

time period [0, T ].

2.3.4 Model Validation

To test the validity of (2.14) we first determined (λ, µ, σ) for four papers

selected for their widely different citation histories (Fig. 2.6A), finding that

after rescaling they all collapse into a single curve (2.14) (Fig. 2.6B). The

reason is explained in Fig. 2.6C: by varying λ, µ and σ, Eq. (2.13) can account

for a wide range of empirically observed citation histories, from jump-decay

patterns to delayed impact. Yet, to test the validity of MiC, we rescaled

all papers published between 1950 and 1980 in the Physical Review corpus,

finding that they all collapse into (2.14) (Fig. 2.6D). We also tested our

model on all papers published in 1990 by 12 prominent journals (Table S2),
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Figure 2.6: Validating MiC. (A) Citation history of four papers published
in PR in 1964, selected for their distinct citation dynamics. (B) Data collapse
for the four papers in (A) using Eq. (2.14). Legend: the (λ, µ, σ) parameters
used to rescale the citation history of each paper. (C) Changes in the cita-
tion history c(t) according to (2.13) after varying the (λ, µ, σ) parameters,
indicating that (2.13) can account for a wide range of citation patterns. (D)
Data collapse for 7,775 papers with more than 30 citations within 30 years
in the PR corpus published between 1950 and 1980.
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Table 2.2: Citation statistics for 11 non-review journals and one
review journal in 1990. In line with citation items in definition of IF, we
only include here reviews and articles. For 11 non-review journals, highest
Λ, M and Σ are in bold faces. C∞ is obtained by C∞ = m

(
eΛ − 1

)
.

Journal Year # Papers Λ M Σ C∞

Cell 1990 485 2.55 6.99 1.23 354
NEJM 1990 330 2.54 7.34 1.24 350
Nature 1990 1,099 2.36 7.36 1.24 289
Science 1990 842 2.33 7.32 1.23 280
Neuron 1990 178 1.99 7.22 1.04 189
Lancet 1990 541 1.84 7.61 1.16 159
Gene-Dev 1990 200 1.83 7.17 1.09 157
JEM 1990 313 1.76 7.29 1.07 144
PNAS 1990 2,060 1.73 7.41 1.11 140
PRL 1990 1,633 1.61 7.78 1.37 121
PRB 1990 2,189 1.13 7.93 1.32 63
RMP 1990 18 3.95 8.09 1.62 1535

finding an excellent collapse for all (Fig. 2.7). The data collapse demonstrates

that the observed differences in individual citation histories (Fig 2.1D) are

rooted in variations in three measurable parameters: fitness, immediacy and

longevity. Hence the diverse citation histories hide a remarkable degree of

regularity, accurately captured by the MiC model (2.13)–(2.14).

Using the appropriate (λi, µi, σi) for each paper, the model is expected to

generate a citation history that resembles the real citations of Fig. 2.1D. We

show in Fig. 2.8 an example of randomly selected papers published between

1960 and 1970, finding excellent agreement between the model and empirical

data.

Taken together, what this section shows is a rather encouraging signal.
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Figure 2.7: Validating MiC for 12 journals.
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Figure 2.8: Simulating individual citation histories. We randomly
selected two papers each year between 1960 to 1970 from the PR corpus.
Their citation histories are shown on the top panel. Color code is the same
as Fig. 1D, corresponding to the publication year. We estimated the set of
(λ, µ, σ) parameters for each paper using the methods described in Section
2.3.3. The bottom panel shows the citation dynamics predicted by Eq. (2.13).

As noisy and unpredictable as citation histories (Fig. 2.1 and Fig. 2.3), the

citation dynamics of individual papers hide a remarkable amount of regular-

ity, that can be accurately captured by the MiC model presented here. While

relying on a minimal set of ingredients that drive citation histories, MiC fits

real citation dynamics remarkably well, indicating the impact dynamics that
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reflects the cumulative response from scientific community follows rather ro-

bust patterns, despite myriad of factors that influence them.

The rest of this chapter is organized as the following. We will present

other potential models that have been or can be used to characterize citation

dynamics, and discuss their strengths and limitations. Then we will spend

four sections on the applications of MiC, illustrating that MiC offers us a

quantitative understanding of scientific impact.

2.4 Potential Models for Citation Dynamics

The observed accuracy of the MiC model prompts us to ask whether MiC is

unique in its ability to capture future citation histories. We therefore seek

models that can account for the observed diversity in citation dynamics, fit

citation histories, and predict future citations. While most models are not

specifically designed to capture the citation dynamics of individual papers,

we examine in this section some of the most relevant models and discuss their

strengths and limitations. Two lines of inquiry are relevant in this context:

network growth models from statistical physics built to capture citation net-

works, and models pertaining to diffusion of innovations in social/ecomonic

sciences.
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2.4.1 Network Growth Models

Scale-Free Model

The scale-free model (also known as Barabási-Albert (BA) model) is designed

to reproduce the degree distribution of complex networks. Note that variants

of the model were proposed by Price [28] and Simon [94]. At each step an old

paper i acquires citations from a new paper with probability proportional to

its current citations Πi ∝ cti, a mechanism known as preferential attachment

(PA).

Despite the success of the scale-free model in predicting fat-tailed citation

distribution, it has difficulties capturing the citation dynamics of individual

papers. Indeed, for paper i the scale-free model predicts its citation growth

as [9]

cti ∼ N 1/2, (2.25)

where cti is the cumulative number of citations paper i received, given the

N papers in the system. This indicates that (i) all papers follow the same

citation dynamics, in contrast with our observation (Fig. 1D) that each paper

has a different citation history; (ii) it tells us that the citations should grow

indefinitely at N 1/2. If we incorporate in the model the fact that we have an

exponential growth in the number of papers (see Eq. (2.1)), we find that

cti ∼ exp(0.5βt), (2.26)
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indicating that the paper citations should increase exponentially over time

(Fig. 2.9). Yet, the average number of citations ci(t) of all papers i at time

t after publication follows a distinct ‘jump-decay’ pattern (Fig. 2.3A), in-

dicating that a paper’s main impact comes during the first two years after

publication and diminishes over time [28]. Therefore, both (2.25) and (2.26)

represent drastic deviations from the empirical observations.
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Figure 2.9: Simulation results for the scale-free model. We simulate a
scale-free network with 100,000 nodes. Each node is associated with a time
stamp such that the number of nodes in each unit time grows exponentially,
following Eq. (2.1). We group together the nodes with the same time stamps,
in analogy to papers published in the same year, and explore how their
degrees evolve over time. Inset: the new links acquired by the selected nodes
in each time step shown on a log-linear scale, demonstrating the exponential
nature of the growth curve, as predicted by Eq. (2.26).

Fitness Model

In the fitness model (also known as Bianconi-Barabási (BB) model), besides

the PA mechanism each paper i has an initial fitness λi capturing its unique
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likelihood to be cited in the future. That is,

Πi ∝ λic
t
i. (2.27)

The fitness model predicts

cti ∼ N αi , (2.28)

where the exponent αi ∝ λi, i.e. it is proportional to paper i’s fitness. Given

exponential growth of papers (Eq. 2.1), we find that cti again increases expo-

nentially over time, significantly deviating from the observations (Fig. 2.3A).

2.4.2 Diffusion of Innovations

The theory of diffusion of innovations aims to explain the adoption of new

ideas and technologies. Although its main focus is to determine the success

and failure of a product, the models often predict S-curves that are similar to

the one presented in the main text. Next we explore the possibility of using

diffusion S-curves to describe the citation history of individual papers.

Logistic Model

The logistic function is widely used to model population growth and product

adoptions, with applications in many fields. In the context of citations one

could view a paper as a new product, whose adoption leads to an increase in

citations. Each paper is characterized by a different increase rate r and a total

number of citations c∞i that captures the differences in impact. With time,

42



a paper’s attractiveness fades, as the development along the ideas offered by

the paper have been adopted by all potential adopters, hence the paper’s

citations approach c∞i . In the rate equation formalism this can be described

as

dcti
dt

= ric
t
i

(
1− cti

c∞i

)
, (2.29)

yielding

cti =
c∞i

1 + e−ri(t−τi)
, (2.30)

where c∞i , ri and τi correspond to ultimate citation, longevity, and immediacy

of paper i.

Bass Model

One of the most famous models in marketing and management sciences is

the Bass model [10], that describes the process of new product being adopted

by mass populations. The Bass model assumes the adopters of a product

are influenced by two aspects: mass media and word of mouth. Hence the

buyers comprise two groups. One group, the innovators as coined by Bass,

is influenced only by the mass media, while the other group, the imitators,

is influenced by others (word of mouth effect). Such assumptions are fairly

reasonable in the context of citations. The innovators correspond to people

who cite the paper spontaneously, little influenced by how many people have

already cited the paper. At the same time, a paper’s citations are driven

by word-of-mouth diffusion (the imitators). Mathematically, this can be
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expressed as

dcti
dt

= (p+ qcti/c
∞)(c∞ − cti), (2.31)

where p characterizes “innovators”, reflecting an influence that is indepen-

dent of current citations (cti), and q reflects the imitation part of the model.

Solving (2.31) yields

cti = c∞
1− e−(p+q)t

1 + q
p
e−(p+q)t

. (2.32)

Gompertz Model

The Gompertz model [46], named after Benjamin Gompertz, was first pro-

posed to model human mortality. The model generates a skewed diffusion

curve with long tails. In this context, early citations pave the way for new

citations and drive the citation dynamics, hence the rate of research develop

increases at an exponential rate. This can be formulated as

dcti
dt

= qcti ln(c∞/cti), (2.33)

yielding,

cti = c∞e−e
−(a+qt)

. (2.34)

In (2.34), a sets the displacement in cti, while q characterizes the growth rate

of citations.

It is worth noting that, while these three models are perhaps the most

famous ones, they are far from complete to cover the list of models in diffusion

of innovations. For a more comprehensive review of this body of literatures,

44



Table 2.3: Modeling citation dynamics. We identified four models that
can be or have been used to fit citation histories. The table shows the
corresponding rate equation and its analytical solution. In this dissertation
we do not explicitly test the prediction of the Bianconi-Barabási model, as
it lacks saturation for high t, hence it is unable to fit true citation histories.

Model Name Rate Equation Solution

MiC
dcti
dt
≈ ctiηiP (t) cti = m

(
e
λiΦ(

ln t−µi
σi

) − 1
)

Bianconi-Barabási [12]
dcti
dt
≈ ηic

t
i cti ∼ exp(λit)

Logistic [77]
dcti
dt

= ric
t
i (1− cti/c∞) cti = c∞

1+e−ri(t−τi)

Bass [10]
dcti
dt

= (p+ qcti/c
∞)(c∞ − cti) cti = c∞ 1−e−(p+q)t

1+ q
p
e−(p+q)t

Gompertz [46, 77]
dcti
dt

= qcti ln(c∞/cti) cti = c∞e−e
−(a+qt)

refer to [77].

2.4.3 Goodness of Fitting

The main models discussed in this section are summarized in Table 2.3. Next

we evaluate the performance of these three models in describing citation dy-

namics, in comparison with MiC. There are two aspects we need to evaluate.

One concerns with fitting. That is, how closely each model matches citation

histories. This is the focus of this section. The second aspect is about the

predictive power of these models, which will be discussed in more details in

Section 2.5.3.

As outlined in Table 2.3, these three models, together with MiC, all have

3 parameters each, making it a fair comparison of how well each of the mod-
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els fit the citation dynamics. Therefore, given a paper’s citation dynamics,

we can obtain the three parameters for each paper for a given model. We

implemented two methods to estimate the best parameters for fitting for each

the models. One is by using non-linear least square fitting, and the other one

is by using Maximum Likelihood Estimation. We find these two methods

have comparable performance for these three models, corroborating previous

finding that in most cases these two methods perform equally well in fitting

these models [77].

Figure 2.10: Goodness of fit using weighted Kolmogorov-Smirnov (KS) test,
indicating that Eq. (2.13) offers the best fit to our testing base.

We fitted these three models to our test base of papers (all papers in

the PR corpus published within the same decade (1960s) that have at least

10 citations in 5 years). To quantify how well the model fits the real data,

for each paper i with total cTi within time period [0, T ] we measured the
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weighted KS measure

Di = max
t∈[0,T ]

|cti − c̃ti|√
(1 + cti)(c

T
i − cti + 1)

, (2.35)

where c̃ti represents the citations computed by the model. A smaller Di

implies a better fit. Figure 2.10 shows the KS distribution P (D) for both

MiC and the three competing models, finding the best fit is offered by MiC.
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Figure 2.11: Fitting the four papers in Fig. 1G by using (A) MiC, (B)
Gompertz, (C) Bass, and (D) Logistic models.
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To illustrate the fitting results and compare the fit by the four model, we

use the four papers shown in Fig. 2.3B and obtain the best fit (Fig. 2.11). We

find, despite radical differences in citation dynamics of these four papers, MiC

fit all of them consistently well. Logistic model performs the worst, mainly

due to the fact that it predicts a symmetric citation curves (same growth and

decay). While the Gompertz and the Bass models predict asymmetric cita-

tion pattern, they also predict an exponential (Bass) or double-exponential

(Gompertz) decay of citations (Table 2.3), much faster than observed in real

data. As a result, they both over-estimate the citation at small time scales

(growth region), particularly for papers with low immediacy (red curve in

Fig. 2.11). As Gompertz, Bass, and Logistic models predict citation tails

with an exponential or faster decay, it also affects their predictive power.

Refer to Section 2.5.3 for more details.

2.5 Applications

2.5.1 Parameter Distributions

The model indicates that the differences in the citation history of individual

papers are encoded in the (λ, µ, σ) parameters, offering a new way to quan-

tify a paper’s impact and compare different papers through three separable

factors. This is best illustrated by comparing the density functions P (λ),

P (µ) and P (σ) for papers published in different journals in the same year

(1990) (Fig. 2.12), indicating striking fitness differences among the journals.
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For example P (λ) for PRB is peaked at λ ≈ 0.5 and is characterized by a

relative paucity of high fitness publications. In contrast most Cell papers

have high fitness, in the vicinity of 2 and 3.

d fe

a b c

Figure 2.12: Parameter distributions for papers published by six
journals in 1990. (a) Fitness distributions are radically different for dif-
ferent journals. (b) Immediacy distributions show modest differences: Cell
has the smallest average µ among the 6 journals, while the average immedi-
acy of PRB is the largest. (c) Longevity distributions of these journals are
characterized by similar mean values.

We also find a modest temporal shift in fitness distributions (Fig. 2.13a).

The observed P (µ) and P (σ) distributions show a remarkable stability in

time, across decades (Fig. 2.13bc). Hence in most cases the immediacy (µ)

and the decay (σ) remain unchanged over decades for some journals (but in

some periods they can undergo major changes, as we document for Cell).

We also detect a weak linear correlation between λi and σi (Fig. 2.13d),

indicating that papers with high fitness are more likely to have a slower

decay, enhancing their long-term impact. Fitness λ and immediacy µi are

independent for most but the high λ papers (Fig. 2.13e), suggesting that it
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Figure 2.13: Temporal evolution of the parameter distributions and
correlations between them. (a) Fitness distribution for papers published
in different years (1980, 1990, and 2000) within the PR corpus. (b) Im-
mediacy distributions for papers shown in (a). (c) Same, but for longevity
distributions. (d) We observe a weak linear correlation between λ and σ,
indicating higher fitness papers tend to have larger longevity. (e) λ and µ
are largely uncorrelated, except in the large λ region, indicating that papers
with very high fitness are also characterized by a delayed impact.

takes more than 20 years (µ > 9) for truly influential papers (high λ) to reach

their citation peak. This explains the lack of correlation between a paper’s

early (c2) and long-term (c30) citations for exceptionally high impact papers

(Fig. 2.1C).

2.5.2 Ultimate Impact

The mechanistic nature of the model allows us to develop several fundamental

measures of impact:
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Ultimate impact (c∞) represents the total number of citations a paper

acquires during its lifetime. By taking the t → ∞ limit in Eq. (2.13), we

obtain

c∞i = m
(
eλi − 1

)
, (2.36)

a simple formula that predicts that the total number of citations acquired

by a paper during its lifetime is independent of immediacy (µ) or the rate

of decay (σ), and depends only on a single parameter, the paper’s relative

fitness, λ.

Impact time (T ∗i ) represents the characteristic time it takes for a paper

to collect the bulk of its citations. A natural measure is the time necessary

for a paper to reach the geometric mean of its final citations. As m can be

viewed as some sort of initial attractiveness, this is equivalent to solving for

t in √
m (m+ c∞i ) = m

(
e
λiΦ

(
ln t−µi
σi

)
− 1

)
. (2.37)

Considering eλiΦ(x) � 1, we can approximate the impact time T ∗i as

T ∗i ≈ exp(µi). (2.38)

Hence impact time is mainly determined by the immediacy parameter µi and

is largely independent of fitness λi or decay σi.

Next we show, using the fundamental measures predicted here, the MiC

model offers a journal free methodology to evaluate long term impact. To
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Figure 2.14: Evaluating long-term Impact. (A) Fitness distribution P (λ) for
papers published by Cell, PNAS, and Physical Review B (PRB) in 1990. Shaded area
indicates papers in the λ ≈ 1 range selected for further study. (B) Citation distributions
for papers with fitness λ ≈ 1 highlighted in (A) for years 2, 4, 10, and 20 after publication.
(C) Time dependent relative variance of citations for papers selected in (A). (D) Citation
distribution two years after publication (P (c2)) for papers published by Cell, PNAS, and
PRB. Shaded area highlights papers with c2 ∈ [5, 9] selected for further study. (E) Citation
distributions for papers with c2 ∈ [5, 9] selected in (D) after 2, 4, 10, and 20 years. (F)
Time dependent relative variance of citations for papers selected in (D).
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illustrate this we selected three journals with widely different IFs: Physical

Review B (PRB) (IF = 3.26 in 1992), PNAS (10.48) and Cell (33.62), and

measured for each paper published by them the fitness λ, obtaining their dis-

tinct journal-specific P (λ) fitness distribution (Fig. 2.14A). We then selected

all papers with comparable fitness λ ≈ 1, and followed their citation histo-

ries. As expected they follow different paths: Cell papers ran slightly ahead

and PRB papers stay behind, resulting in distinct P (cT ) distributions for

years T = 2÷4. Yet, by year 20 the cumulative number of citations acquired

by these papers show a remarkable convergence to each other (Fig. 2.14B),

supporting our prediction that given their similar fitness λ, eventually they

will have the same ultimate impact c∞ = 51.5. This convergence is also sup-

ported by the decreasing σc/ 〈c〉 ratio of P (cT ) (Fig. 2.14C), indicating that

the differences in citation counts between these papers vanish with time. In

contrast, if we choose all papers with the same number of citations at year

two (i.e. the same c2, Fig. 2.14D), the citations acquired by them diverge with

time and σc/ 〈c〉 increases (Fig. 2.14E,F), supporting the lack of predictability

in these quantities. Therefore λ and c∞ offer a journal independent measure

of a publication’s long-term impact, in contrast with the lack of predictive

power of c2 and/or the IF.

2.5.3 Citation Predictions

While our primary goal is to uncover the mechanisms driving a paper’s cita-

tion history, the accuracy of the MiC model raises a tantalizing question: can
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we use the developed framework to predict the future citations of a publica-

tion? In this section, we explore the possibility of using MiC as a prediction

tool for future citations, and compare its predictive power with other models

in Section 2.4.

In principle, we can use a paper’s citation history up to year Tt after pub-

lication (training period Tt) to estimate the λi, µi, σi parameters associated

with the paper and then use Eq. 2.13 to predict the paper’s future citations.

This process can be formalized as the following. Using the training period

Tt and kt sampling citations, we try to predict the number of citations at a

future time Tp. Equation 2.13 predicts the expected increment of citations

between the period (Tt, Tp]

∆k = (kt +m)
(
eη(Φ((lnTp−µ)/σ)−Φ((lnTt−µ)/σ)) − 1

)
. (2.39)

Hence, the expected citation at time Tp is

k(η, µ, σ) = (kt +m)eη(Φ((lnTp−µ)/σ)−Φ((lnTt−µ)/σ)) −m (2.40)

where, by assuming uniform prior distributions of (η, µ, σ), the probability

of taking parameters (η, µ, σ) follows,

P (η, µ, σ) ∝ L = elnL(η,µ,σ), (2.41)

where the likelihood function L satisfies Eq. (2.19).
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Therefore, given a citation history, we can use MiC to predict the prob-

ability for the paper to have kp citations at the time Tp,

P (kp) =

∫
δ
(
k(η, µ, σ)− kp

)
P (η, µ, σ)dηdµdσ. (2.42)

Here we neglect the fluctuation from the stochastic process itself, and con-

sider only the uncertainties in parameter estimation.
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k p

)
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Figure 2.15: Illustrative example of P (kp) for a randomly selected paper.
Different lines correspond to different testing period (Tp).

To give an intuition about (2.42), we show P (kp) for a randomly selected

paper for different Tp (Fig. 2.15), illustrating the narrowly peaked nature of

P (kp). Hence, the most probable future citation k∗p can be obtained from

dP (kp)

dkp

∣∣∣∣
kp=k∗p

= 0, (2.43)

and the upper/lower uncertainty can be obtained from the variance of P (kp):
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σ+
p =

√∫ ∞
k∗p

(kp − k∗p)2P (kp)dkp (2.44a)

σ−p =

√∫ k∗p

kt

(kp − k∗p)2P (kp)dkp (2.44b)

Taken together, based on an existing citation history and by combining

Equations (2.43) and (2.44), we can use MiC to predict at each future time

Tp, the most likely citations at the time (k∗p) as well as the confidence range

[−σ−p , σ+
p ], represented as a citation envelope (Fig. 2.16). This is further

illustrated in Fig. 2.17A, in which we show the predicted most likely citation

path (red line) with the uncertainty envelope (grey area) for three papers,

based on a 5 year training period. Two of the three papers fall within the

envelope, for the third, however, the MiC model overestimates the future

citations. Increasing the training period enhances the predictive accuracy

(Fig. 2.17B).

To systematically evaluate the fraction of papers that fall within the pre-

dicted citation envelope, we measure zT = |cT − k∗p|/σ+
p , that quantifies how

many standard deviations away the real citations deviate from predicted most

likely citations. zT ≤ 1 indicates that the real citation dynamics fall within

the citation envelope. If, however, zT > 2, it indicates that the predicted

citations exit the envelope far enough that the citations are not predicted

correctly by the model. To this end, we compiled a test base of papers,

consisting of all papers in the PR corpus published within the same decade
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Figure 2.16: Citation predictions using MiC for 6 papers randomly selected
form three different journals (PRL, Cell, and Nature).
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B

Figure 2.17: (A, B) Prediction envelope for three papers obtained using a
five (A) and ten (B) years of training (shaded vertical area). The middle
curve offers an example of a paper for which the prediction envelope misses
the future evolution of the citations. The envelope illustrates the range for
which z ≤ 1. Comparing A and B illustrates how the increasing training
period decreases the uncertainty of the prediction, resulting in a narrower
envelope.

(1960s) that have at least 10 citations in 5 years (4492 papers). we measure

the z30-score for each paper, capturing the number of standard deviations

z30 the real citations c30 deviate from the most likely citation 30 years after

publication. The obtained P (z30) distribution across all papers decays fast

58



with z30 (Fig. 2.18), indicating that large z values are extremely rare. With

TTrain = 5 only 6.5% of the papers leave the prediction envelope 30 years

later, hence the model correctly approximates the citation range for 93.5%

of papers 25 years into the future. P (z30) distribution documents the pre-

dictive limitations of the current models. Indeed, for the Logistic, Bass and

Gompertz model more than half of the papers underestimate with more than

two standard deviations the true citations (z > 2) at year 30 (Fig. 2.18), in

contrast with 6.5% for the MiC model.

Figure 2.18: Complementary cumulative distribution of z30 (P>(z30)), where
z30 quantifies how many standard deviations the predicted citation history
deviates from the real citation curve thirty years after publication (see also
S2.6). We selected papers published in 1960s in PR corpus that acquire
at least 10 citations in 5 years (4492 in total). The red curve captures
predictions for 30 years after publication for TTrain = 10, indicating that
for the MiC model 93.5% papers have z30 ≤ 2. The blue curve relies on 5
year training. The grey curves capture the predictions of Gompertz (solid
line), Bass (dash-dot line), and Logistic (dotted line) model for 30 years after
publication by using 10 years as training.
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Figure 2.19: Scatter plots of predicted citations and real citations at year 30
for our test base, using as training data the citation history for the first 5 (A)
or 10 (B) years. The error bars indicate prediction quartiles (25% and 75%)
in each bin, and are colored green if y = x lies between the two quartiles
in that bin, and red otherwise. The black circles correspond to the average
predicted citations in that bin.
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That a large fraction of papers falling within the prediction envelop docu-

ments MiC’s remarkable predictive accuracy, raising an important question:

how well does the real citations match the predicted most likely citations?

Indeed, while MiC correctly predicts the range of future citations for a large

fraction of papers (93.5%), It is also important to know, particularly from a

practical perspective, a single number for future citations instead of a cita-

tion range. An intuitive way to quantify this is through scatter plots. Hence

we used a 5 and a 10 year training period to fit the parameters of each model

and computed the predicted most likely citations at year 30 (Fig. 2.19). We

find that independent of the training period the predictions of the Logistic,

Bass and Gompertz models always lay outside the 25%–75% prediction quar-

tiles (red bars), systematically underestimating future citations. In contrast,

the prediction of Eq. (2.13) for both training periods is within the 25-75%

quantiles, its accuracy visibly improving for the ten year training period

(Fig. 2.19B).

2.5.4 Quantifying a Journal’s Impact

The MiC model (2.13–2.14) also helps connect the impact factor (IF), the

traditional measure of impact of a scientific journal, to the journal’s Λ, M ,

and Σ parameters (the analogs of λ, µ, σ).

To quantify the impact of a journal, we count the average citations all

61



0 5 10 15 20
0

100

200

300

400
 RMP
 Cell
 NEJM
 Nature
 Science
 Neuron
 Lancet
 Gendev
 JEM
 PNAS
 PRL

A
ve

ra
ge

 c
ita

tio
ns

time [year]

Figure 2.20: Average cumulative citations for different journals. The
average number of citations each journal gets to all of its papers published
in 1990. Circles correspond to empirically measured citations, and solid lines
are based on Eq. (2.46)

papers published by the journal acquire over time,

Ct
j =

1

Nj

Nj∑
i

cti, (2.45)

where Nj is the total number of papers published by journal j. Here we only

consider the research papers published by each journal. This can be achieved

by looking at document type for each paper indexed by Web of Science. Most

specifically, we only consider the document types as Review and Article. We

find that for some journals, like for Physical Review Letters (PRL), the vast

majority of papers are in these categories. Yet for other journals, especially
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Figure 2.21: Comparing journal parameters. The three parameters
characterizing a journal’s citation history can be computed in two ways.
One is to average over the parameters of individual papers (〈λ〉, 〈µ〉, 〈σ〉).
The other is to use the average citation curve (Fig. 2.20) for a journal (Λ,
M , Σ). Here we show an a reasonable agreement between the values offered
by these two methods in (a) fitness (b) immediacy (c) longevity.

the ones for general audience, many are classified as “letter to editor” or

“editorial”. Therefore, in analogy to the “citable items” used in measuring

a journal’s impact factor (IF) by Journal Citation Reports, this distinction

is important to understand a journal’s impact.

By viewing each journal as a super paper, we find that Ct
j is also well

approximated by our model (Fig. 2.20), indicating that

Ct
j = m

(
e

ΛjΦ

(
lnT−Mj

Σj

)
− 1

)
. (2.46)

Therefore each journal’s citations are captured by three parameters (Λ,M,Σ),

in analogy with the (λ, µ, σ) parameters derived for individual papers. To

check whether (Λ,M,Σ) represent the average of individual papers published
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by the journal, we computed for each journal shown in Fig. 2.20 the (λ, µ, σ)

parameters for individual papers published in the journal, and the mean of

each parameter with its journal average (Fig. 2.21). We find that 〈λ〉, 〈µ〉,

〈σ〉 are in good agreement with Λ, M , and Σ, indicating that (Λ,M,Σ)

parameters are representative for an average paper published by the journal.

Next we derive IF by using the three parameters (Λ,M,Σ) for each jour-

nal. The IF of a journal is defined as the average number of citations received

per paper by that journal during the two preceding years. Let us consider

for example calculating a journal’s IF in 1992. In the numerator we need

to measure the number of times papers published by this journal in 1990

and 1991 are cited during 1992. This includes all papers published by this

journal. In the denominator, we need to normalize by the number of papers.

But according to the definition from Journal Citation Reports, this normal-

ization is for the number of “citable items” published by that journal in 1990

and 1991. In principle, the exact expression of the IF can be obtained by

integrating over all papers published within the two-year time frame using

their corresponding parameters. Assuming the publication date of a paper

within a year does not affect its citations, we can treat all papers within a

year as published on the same date. Imagine we want to calculate a journal’s

IF in the year T , and this journal published N1 papers in the year T1 = T −2

and N2 papers in T2 = T − 1. Therefore, based on the definition of IF, we
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have

IF(T ) =

N1∑
i

ci(T |T1) +
N2∑
i

ci(T |T2)

N1 +N2

, (2.47)

where ci(T |T1) and ci(T |T2) are the citations in year T for paper i published in

year T1 and T2, respectively. In Fig. 2.22ab, we compared the IFs measured

by Eq. (2.47) to the reported value for Cell and NEJM (Fig. 3) between

1998-2005, finding a good agreement except for small deviations for NEJM

in 1999 and 2000, which are likely caused by the small differences between

our downloaded data and the data used by Journal Citation Report.

The proposed model allows us to calculate the journal’s impact factor

analytically. To do it, we substitute Eqs. (2.45) and (2.46) into (2.47),

obtaining

IF(T ) =
N1C(T |T1) +N2C(T |T2)

N1 +N2

=
mN1

N1 +N2

(
e

Λ(T1)Φ
(
M1−M(T1)

Σ(T1)

)
− eΛ(T1)Φ

(
M3−M(T1)

Σ(T1)

))
+

mN2

N1 +N2

(
e

Λ(T2)Φ
(
M3−M(T2)

Σ(T2)

)
− eΛ(T2)Φ

(
M2−M(T2)

Σ(T2)

))
,

(2.48)

where (Λ(T1),M(T1),Σ(T1)) and (Λ(T2),M(T2),Σ(T2)) are the journal pa-

rameters measured at the year T1 and T2, respectively, andM1 = ln(3 years) =

ln(3×365) ≈ 7.00, M2 = ln(1 year) = ln(365) ≈ 5.90 andM3 = ln(2 years) =

ln(2 × 365) ≈ 6.59. Figure 2.22c documents an excellent match between

Eq. (2.48) and the empirical measurement based on (2.47).

To further simplify (2.48), we assume that the changes in papers published
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Figure 2.22: Comparing IF reported by ISI with the (2.48) approxi-
mation. (a) IF reported by ISI for Cell and NEJM from 1998 to 2006. (b)
IF measured for these two journals within the time span following the defini-
tion of (2.47). (c) IF computed by plugging in the corresponding parameters
in (2.48).
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Figure 2.23: Scatter plot for journals shown in Fig. 2.20, their reported IF
in 1992 and their approximated IF obtained using their parameters in 1990
in (2.49).

by a journal are small over the course of two years, in terms of both number

of papers published and their citations. Under this assumption, N1 = N2

66



and (Λ,M,Σ) ≡ (Λ(T1),M(T1),Σ(T1)) = (Λ(T2),M(T2),Σ(T2)), Eq. (2.48)

leads to

IF ≈ m

2

(
exp

[
ΛΦ

(
M1 −M

Σ

)]
− exp

[
ΛΦ

(
M2 −M

Σ

)])
. (2.49)

This approximation is not able to account for the temporal evolution in IF,

but allows us to compute a journal’s IF using only one year of data. To

see how well (2.49) approximates the reported IF, we use the citation data

for the journals published in 1990 and approximate their IF in 1992. We

then compare the computed IF by using (2.49) with the ones reported by

ISI (Fig. 2.23). We find that despite its simplicity, the two quantities largely

agree with each other for different journals, indicating that (2.49) serves as

a good approximation for a journal’s impact factor.

Equation (2.49) helps us understand the mechanisms that influence changes

in the IF, as vividly illustrated by the evolution of Cell and NEJM : in 1998

the IFs of Cell and NEJM were 38.7 and 28.7, respectively (Fig. 2.24A).

Yet over the next decade there was a remarkable reversal: NEJM became

the first journal to reach IF = 50, while Cell ’s IF decreased to around 30.

This raises a puzzling question: has the impact of papers published by the

two journals changed so dramatically? To answer this we determined Λ,

M , and Σ for both journals from 1996 to 2006 (Fig. 2.24D–F). While Σ

were indistinguishable (Fig. 2.24D), we find that the fitness of NEJM in-

creased from Λ = 2.4 (1996) to Λ = 3.33 (2005), increasing the journal’s
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Figure 2.24: Quantifying changes in a journal’s long-term impact.
(A) Impact factor of Cell and New England Journal of Medicine (NEJM )
reported by Thomson Reuters from 1998 to 2006. (B) Ultimate impact C∞

(see Eq. (2.37)) of papers published by the two journals from 1996 to 2005.
(C) Impact time T ∗ (Eq. (2.38)) of papers published by the two journals
from 1996 to 2005. Inset: fraction of citations that contribute to the IF. (D–
F) The measured time dependent longevity (Σ), fitness (Λ), and immediacy
(M) for the two journals. (G) Fitness distribution for individual papers
published by Cell (left) and NEJM (right) in 1996 (black) and 2005 (red).
(H) Immediacy distributions for individual papers published by Cell (left)
and NEJM (right) in 1996 (black) and 2005 (red).
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ultimate impact from C∞ = 300 (1996) to a remarkable C∞ = 812 (2005)

(Fig. 2.24B). But Cell ’s Λ also increased in this period (Fig. 2.24E), mov-

ing its ultimate impact from C∞ = 366 (1996) to 573 (2005). Yet, if both

journals attracted papers with increasing long-term impact, why did Cell ’s

IF drop and NEJM ’s grow? The answer lies in changes in the impact time

T ∗ = exp(M): while NEJM ’s impact time remained unchanged at T ∗ ≈ 3

years, Cell ’s T ∗ increased from T ∗ = 2.4 years to T ∗ = 4 years (Fig. 2.24C).

Therefore, Cell papers have gravitated from short to long-term impact: a

typical Cell paper gets 50% more citations than a decade ago, but fewer of

the citations come within the first two years (Fig. 2.24C, inset). In contrast,

with a largely unchanged T ∗, NEJM ’s increase in Λ translated into a higher

IF. These conclusions are fully supported by the P (λ) and P (µ) distributions

for individual papers published by Cell and NEJM in 1996 and 2005: both

journals show a clear shift to higher fitness papers (Fig. 2.24G), but while

P (µ) is largely unchanged for NEJM, there is a clear shift to higher µ papers

in Cell (Fig. 2.24H).

2.6 Discussions and Conclusions

The remarkable accuracy of the MiC model we documented in this chapter,

both in its ability to capture the universal aspects of citation histories, as well

as to predict future citations, supports our hypothesis that scientific impact

is a collective phenomenon, governed by mechanisms that follow reproducible
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patterns [107, 20, 97]. Therefore I would anticipate that the proposed model-

ing framework is not limited to citations, but with appropriate adjustments

will likely apply to other phenomena driven by collective processes, from

patents to the popularity of twitter hash tags. Another much anticipated

direction is a shift of focus from understanding the dynamics and properties

of a system as a whole to the characterization of individual items within the

system. The MiC model illustrates an example where a remarkable amount

of regularity within individual papers is hidden behind the apparent noise

and unpredictability in their citation dynamics.

At the same time, the model also has obvious limitations: it cannot

account for exogenous “second acts”, like the citation bump observed for

superconductivity papers following the discovery of high temperature super-

conductivity in the 1980s, or delayed impact, like the explosion of citations

to Erdős and Rényi’s work four decades after their publication, following the

emergence of network science [90, 24, 31, 17].

Taken together, the mechanistic understanding of citation dynamics of-

fers a quantitative springboard to uncover the hallmarks of future impact.

These questions also have major policy implications, as current measures of

citation-based impact, from IF to Hirsch index [54, 1], are frequently inte-

grated in reward procedures, the assignment of research grants, awards and

even salaries and bonuses [78, 41], despite their well-known lack of predictive

power. In contrast with the IF and short-term citations that lack predictive

power, we find that c∞ offers a journal independent assessment of a paper’s
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long term impact, with a meaningful interpretation: it captures the total

number of citations a paper will ever acquire, or the discovery’s ultimate

impact. While additional variables combined with data mining could fur-

ther enhance the demonstrated predictive power, an ultimate understanding

of long-term impact will benefit from a mechanistic understanding of the

factors that govern the research community’s response to a discovery.
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Chapter 3

Factors that Affect Information

Spreading Processes

Information spreading plays an essential role in numerous human interac-

tions, including the spread of innovations [104, 100], knowledge and infor-

mation security management [49], social influence in marketing [29, 61, 70],

and more. Thanks to the increasing availability of large-scale data, we have

witnessed great advances in understanding how information propagates from

person to person, ranging from incentivized word-of-mouth effects when rec-

ommending products [70, 56], to understanding how a single piece of infor-

mation forms internet chain letters on a global scale [74].

Despite recent studies in online social networks [70, 4, 50, 72], it has been

difficult to obtain detailed traces of information dissemination alongside rele-

vant contextual data such as people’s real social connections, their behavioral
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profiles, and job roles in organizations. Therefore, an important question is

largely unanswered: to what extent do spreading processes depend on the un-

derlying social network and behavioral profiles of individuals. Indeed, on one

hand, information such as rumors, innovations and opinions diffuses through

the underlying social networks. To whom and to how many people a user

would pass such information is constrained by whom s/he connects to and

how well s/he is connected in the social network, and the strength of those

connections. On the other hand, the population-based heterogeneity in per-

sonal profiles coexists with complex connectivities between individuals, rais-

ing questions about to what degree the diverse profiles of individuals, from

personal interests and expertise to communities and hierarchy, impact the

information spreading process. Understanding the role of these features is of

fundamental importance.

The lack of contextual information could change drastically, however,

thanks to the pervasive use of email communications in well-documented

settings, such as corporate work forces [36, 95, 37, 115, 8, 3, 62, 59]. Indeed,

emails have become the most important communication method in various

settings [112, 95], unveiling detailed traces of social interactions among large

populations. Previous studies [112, 11] have shown that email communica-

tions serve as a good indicator of social ties. Forwarded emails [96], written

by someone other than the sender and sent to someone who was not included

in the original email, serve as an ideal proxy for the information spreading

process, where the single piece of information, the original body of the email,
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is passed through the social network.

We compiled a new dataset by integrating two related but distinct data

structures, collected from a large-scale, privacy-preserving distributed social

sensor system. First, we collected two years of email communication data

from 8, 952 volunteer employees within a large technology firm operating in

more than 70 countries. Emails occupy the majority of information workers’

time and thus provide high-quality observation of the social context, i.e., the

real social connections of employees in the workplace [112, 11]. In addition to

such “informal networks,” we investigated the “formal networks,” imposed by

the corporation such as their hierarchical structure, as well as demographic

data such as geography, job role, self-specified interests, performance, etc.

This dataset provides us unique opportunities to study the interplay between

the information spreading and its context. This issue is largely not addressed

in previous studies partially due to the lack of such a multi-faceted dataset

and the difficulty in matching user IDs across multiple sources.

Specifically, we investigate the impact of context on spreading processes

in two levels:

• At the microscopic level, we are interested in the behaviors of each

individual in the spreading process, e.g. to whom and how fast does a

user forward information? (Sec. 3.3)

• At the macroscopic level, we ask what are the structural properties of

the spreading processes? And what is the best model for the observed
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structures? (Sec. 3.4)

At the microscopic level, we find that information spreading is indeed

highly dependent on social context as well as the individuals’ behavioral pro-

files. Macroscopically, however, we find that the tree structures observed

in the spreading process can be accurately captured by a simple stochastic

branching model, indicating the macroscopic structures of spreading pro-

cesses, i.e., to how many people a user forwards the information and the

overall coverage of the information, are largely independent of context and

follow a simple reproducible pattern. To the best of our knowledge, this work

presents the first comprehensive analysis of the determining factors affecting

information spreading processes. We believe our findings are of fundamen-

tal importance in developing prediction models for information flow, provide

new insights towards the design of our social and collaborative applications,

such as assisting users to disseminate information more efficiently, protect-

ing digital information leakage, and promoting spreading strategies to achieve

expected coverage.

3.1 Related Work

In this section, we review three categories of related work: studies on infor-

mation spreading and cascades, social network analysis especially on emails,

and virus propagation.
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Information Spreading and Cascades

Various studies in online domains have been conducted to understand the

structural properties of information flow. Among them, the spreading pro-

cesses of specific pieces of information, including studies on internet chain

letters and viral marketing, are most related to our work. Liben-Nowell and

Kleinberg [74] studied information flows on a global scale using internet chain

letters. They found that the structures of observed trees are narrow and deep.

They proposed a probabilistic model, leveraging the structure of other social

networks, to explain the deep tree-like structure. Golub and Jackson [45]

then showed that the structures observed in [74] could be explained by the

Galton-Watson branching model [111] combined with the selection bias of

observing only the largest trees. Leskovec, Adamic and Huberman [70] stud-

ied an incentivized word-of-mouth effect by analyzing viral marketing data,

focusing on the overall properties of the resulting recommendation network

and its dynamics. By using data from a viral experiment of recommending

newsletters, Iribarren and Moro [56] modeled the overall dynamics of infor-

mation flow from individual activity patterns. There has been extensive work

done in the blog domains about cascading behaviors [65, 4, 50, 72], and sev-

eral models have been proposed to capture the structure of the blogosphere.

Previous work focuses on analyzing the observed properties of information

flows. In contrast, the questions we are interested in this study are Why does

information spread? What are the factors that could potentially affect this

process?
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Emails

Much work has focused on email communication records, from their static

topological structure [36, 3] to dynamic properties [37, 8, 106, 62, 56]. These

works focus on the overall structure of the social network, or on the timing

of events. Recently, Karagiannis and Vojnovic [59] studied the behavioral

patterns of email usage in a large-scale enterprise by looking at email replies.

They examined various factors that could potentially affect email replies, fo-

cusing on pair-wise interactions and aiming to inform the design of advanced

features. Our approach presents a new angle to using email data. First, we

treat social networks as the backbone of the spreading processes, using the

network topology to inspect the structures of information spreading and to

assess models. Second, the spreading processes we study go beyond the pair-

wise interactions of email replies, representing richer structural properties.

Virus Propagation

There is much literature regarding virus propagation. To name a few, Heth-

cote [53] studied the epidemic threshold for cliques. Briesemeister et al [15]

studied the virus propagation on power law graphs by simulations. Most

recent research has been devoted to real, arbitrary graphs. For example,

Wang et al. [110] gave the analytic epidemic threshold for an arbitrary graph.

Based on that, Tong et al [102] proposed an effective immunization strategy

by approximately maximizing that threshold.
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Virus propagation, although bearing some high level similarity to spread-

ing of information, is not selective, meaning that a better connected indi-

vidual in the network will infect more people. Information, on the other

hand, spreads purposefully, representing a more complex behavior. Indeed,

in our study we investigate the factors that affect to whom, and to how

many people, a user forwards information, exploring the selective process of

information spreading.
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Figure 3.1: Activity levels at different times of the week for email forwarding
activities and overall email traffic in (a), and ratios of the two in (b). The
ratios in weekends are omitted due to the low volumes.

3.2 Preliminaries

In this section, we describe the datasets used in our study and present the

basic properties of the dataset.
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3.2.1 Data Description

We collected detailed electronic communication records of 8, 952 volunteer

employees in more than 70 countries over a two-year period within a large

global technology company with over 400, 000 employees. Each log entry

specifies the sender and receiver(s) of the message, a timestamp, the subject,

and the content of the body of the email. To preserve privacy1, the email

addresses of users are hashed, and the original textual content in email’s

body was not saved. Instead, this content is represented as a term-frequency

vector containing the terms that appear in the text as well as their counts

after stemming and removal of stop-words. During the two year period, we

observe about 20 million emails sent by our users. For the same population,

we gathered information specifying a range of personal attributes (gender,

job role, departmental affiliation and report-to relation with managers, and

more). We also collected detailed financial performance data for more than

10,000 consultants in the company. These consultants generate revenue by

logging “billable hours”. It has been found that a consultant’s ability to gen-

erate revenue is an appropriate productivity measure [116]. Therefore, we

measure performance of individuals with the total US dollars a consultant

generated from June 2007 to July 2008. Combining the financial and com-

munication data yields a total of 1,029 consultants for whom we have both

email and financial records. The identities of participants were hashed.

As we are interested in how a specific piece of information spreads, we

1refer to [113] for more information about privacy related solutions

79



further processed our dataset using the following procedures. We started by

looking for the string Fw: in the beginning of each email subject title. This

process gives us all the emails that were forwarded. We then grouped emails

with the same subject title together, reconstructing the original threads.

Each forwarded thread results in an information spreading tree structure,

where the single piece of information, the original body of the email, was

passed from one to others. Our dataset provides us with 9, 623 such distinct

threads, the starting point of our study.

3.2.2 Basic Properties

As our dataset captures communication within an enterprise, the temporal

patterns and the organizational roles of individuals involved may indicate the

importance of forwarded emails. We show in Fig. 3.1a the activity levels, the

number of communications in each hour of the week normalized by the total

number of communications in a week. We observe a clearly periodic pattern.

Communication builds up in the morning and decays in the afternoon with

a notable dip at noon indicating the lunch time. There are two interesting

points we want to make here. First, while the activity levels of forwarded

emails (red squares) follow a similar periodic pattern to the overall email

traffic (blue circles), their activity levels are significantly higher than the

normal email traffic on workday mornings, especially on Mondays, and lower

in the afternoons especially on Fridays. This can be seen clearly in Fig. 3.1b,

where we show the ratio of the two curves in Fig. 3.1a. The curve goes

80



above 1 in the mornings, but mostly below 1 in the afternoons. This is a

good indicator that forwarded emails are timely and important, representing

a special class of overall email traffic. Second, access to email is limited by

weekly schedules. This weekly cycle becomes important when we inspect the

efficiency of information spreading in the following sections. That is, there

is a time delay when forwarding an email after receiving it. For example,

a delay of two days in the delivery of information, when it was received on

Friday, could be due to the inability of a user to access his or her email

during the weekend. Therefore, for any calculation regarding time in the

following sections, we perform a check by removing the off-hours. Yet no

results changed qualitatively.

In addition, we observe that 38% of the forwarded threads involve people

from multiple departments. This suggests that email forwarding is an im-

portant means to facilitate cross-organization collaboration. Moreover, 43%

of the emails are forwarded by managers, indicating that email forwarding is

a common management tool.

3.3 Microscopic Information Spreading in Con-

text

What factors could potentially affect the information spreading process at the

microscopic level, i.e., to whom and how fast a user spreads the information?

Why does some information get rapidly processed and passed on to others,
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while other information experiences notable delay? Or more generally, why

does some information get forwarded at all in the first place?

Here we investigate several aspects of these questions. Our analysis will

focus on the most fundamental building blocks of information spreading –

information pathways, as illustrated in Fig. 3.2. More specifically, user A sent

an email to user B at a certain time with a specific title. Then user B waited

for some time and forwarded the message to user C, passing the information,

the main body of the email, along via B from A to C. We refer to user A as

“initiator”, B as “spreader”, and C as “receiver”. The dissemination process

can be far more complex than this simple case, as we shall see in Section 3.4,

where we focus on spreading processes at the macroscopic level, exploring to

what extent the overall structure of spreading processes depends on context.

Yet any spreading tree structures can be reduced to a combination of such

information pathways.

A B C
Aug 5, 09:30:12 “data request” Aug 5, 09:53:00 “Fw: data request”

Spreader ReceiverInitiator

Figure 3.2: An illustrative example of an information pathway.

Our study shows that not only does the social and organizational context

affect to whom a specific piece of information is forwarded, but it also affects

how fast it is forwarded. We found that information undergoes interesting

re-routing processes, from weak links to strong ties, and from non-experts

to experts. The efficiency of the spreading process is affected by depart-
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mental structure, but little by individual performance. These findings can

guide us to build better social and collaborative environments, design ap-

plications assisting users to disseminate information more efficiently, and

develop strategies to protect digital information leakage and predictive tools

for recommendation systems.

3.3.1 The Underlying Social Networks

How information spreads may be influenced by the underlying social network,

and understanding the interplay between the social network and spreading

process is very important. First, it has a number of implications in various

social systems, such as promoting new strategies in viral marketing by taking

into account the effect of the network topology. Second, it plays an important

role in assessing the choice of models, arguing whether a flu-like epidemiology

model, which directly relies on the topology of the network, is suitable for

modeling the information flow, (see Section 3.4).

We start by building a social network among our users by aggregating

email communications over a one year period. We add a link between two

users if there has been at least one email communication between them.

The weight of the link, w(i → j), is asymmetric, defined as the number of

emails sent from user i to j. As we are mostly interested in the connectivity

between individuals, we focus on the static picture of the network rather

than the dynamics of the network evolution.
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We show in Fig. 3.3 the probability ratio of email forwarding activity2

as a function of the weight of the links between initiators and spreaders,

w(A→ B), and spreaders and receivers, w(B → C), defined in the informa-

tion pathways in Fig. 3.2. A positive slope would indicate that information is

more likely to flow through strong ties, whereas a negative slope shows that

weaker connections are more favorable for the spreading processes. Surpris-

ingly, we observe that the information is more likely to spread initially via

weak ties and then gets passed through strong connections, strong evidence

of information routing by spreaders choosing social neighbors of different

closeness.
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Figure 3.3: The probability ratio of email forwarding as a function of the
weight of links between A and B and B and C respectively in the information
pathways. Information spreading undergoes an interesting re-routing process,
from weak links to strong ties.

2the probability ratio of email forwarding as a function of quantity q is obtained by
PFw(q)/P rand(q), where PFw(q) is the probability of having q in forwarded emails, while
P rand(q) is the same probability for overall emails. A value equals to 1 would indicate
PFw(q) is about what you would expect normally.
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Figure 3.4: The degree distribution of the whole network and the group of the
spreaders. The spreaders have comparable connectivity to randomly sampled
individuals in the network.

This raises an interesting question: how well are the information spreaders

connected in the network? Are they a random sample of individuals or are

they a biased sample of more central social hubs? We show in Fig. 3.4 the

degree distribution P (k) of nodes in the whole social network as grey circles

and the sample of spreaders as orange crosses. Interestingly, we find that

spreaders show nearly the same distribution of connectivity as a random

sample of individuals from the network.

3.3.2 Information Content and Expertise

An important question about information spreading is how the process de-

pends on the relevance of the content of the information to the individual’s

expertise. Here, we explore this issue using the available message content. As
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mentioned previously, the content of each email in our dataset is represented

as term frequencies. We build a vocabulary vector ~vi = 〈s1, s2, ..., sn〉 for each

user i by looking at the content of all the emails sent by i, where the length

of ~vi is the total number of meaningful words that have appeared in all emails

for all users, thus is the same length for every user. The j-th element sj is

the score of the j-th word calculated by TF-IDF. The vector ~vi will provide

a measure of ranked “buzzwords” for user i, which serves as an indicator

of the individual’s expertise, since previous studies have shown emails are a

primary form of communication within big corporations [112, 11]. Next, we

build a vector ~vl for each email l following the same procedure, where sj is

the TF-IDF score of the j-th word in ~vl. Therefore, ~vl will give us a measure

of the content of email l, accounting for overly common words and overly rare

words. Then the similarity between the content of the information l and the

individual i’s expertise is defined as the cosine similarity of the two vectors,

Si,l = ~vi · ~vl/(‖~vi‖ ‖~vl‖). We show in Fig. 3.5, how the probability ratio of

information spreading changes in function of Si,l for user i as (a) spread-

ers and (b) receivers, respectively. The probability ratio anti-correlates with

Si,l, similarity between information content and spreaders’ expertise, yet ex-

hibits a significant positive correlation for the receivers’ case. This finding

offers quantitative evidence that the information undergoes a clear re-routing,

demonstrating that information flows from non-experts to experts. That is,

the information is more likely to be passed on by spreaders if the content

is dissimilar to spreaders’ expertise. It then flows to receivers who are more
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likely to be interested in the information.
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Figure 3.5: Probability ratio of information spreading changes in function of
Si,l for (a) spreaders and (b) receivers. Information spreading undergoes an
interesting re-routing from non-experts to experts.

3.3.3 Organizational Context

In an enterprise, understanding how information flows within and between

different departments and organizational levels is of great importance, from

building a better collaborative environment to controlling information secu-

rity. Here we examine the impact of organizational context in two directions:

one is the influence of departmental restrictions, and the other is the orga-

nizational hierarchies.

In Fig. 3.6, we show the median time delay in information spreading for

spreaders as different roles of brokerage [48]. There are in total five types

of brokers. Figure 3.6 contains illustrative examples for all five: Each box

represents a department, and users are from the same department if they are
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in the same box. If there is only one user in the department, we omit the box

for brevity. Our dataset has individuals from as many as 19 departments,

and the information pathways consisting of people from different departments

are classified into these 5 categories. We observe that the information flows

significantly faster in two cases – coordinator and gatekeeper – than the other

three cases. These are the only two cases where spreaders and receivers are

in the same department. The quartiles also follow similar patterns, yet are

not shown in Fig. 3.6 as the waiting time follows a broad distribution [8].

Thus the bottleneck of information flow in the departmental context is to get

the information out of the department. We further break down the manager

and non-manager cases for each role of brokerage. We find that managers

are better as a representative while non-managers are better as a liaison, but

the difference between managers and non-managers is seldom large.

We now turn our attention to the impact of organizational levels. While

it is intuitive to assume that users would respond faster to emails from people

of higher level in the organization (e.g., the reaction of the emails are influ-

enced by the report-to relationship), a previous study [59] on email replies

revealed that the reply time does not depend on level difference. Our study

shows similar results, confirming that the time delay of information appears

to be independent of the hierarchy. Yet, when we look at the probability ratio

of email forwarding as a function of the level difference (Fig. 3.7a) and orga-

nizational distance (Fig. 3.7b) between initiators and spreaders, we discover

some non-homophily effect as opposed to the homophily effect found in [59].
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Figure 3.6: Information flow in the departmental context. Each box repre-
sents a department, and users are from the same department if they are in
the same box. Information spreads faster when B and C are in the same
department.

As shown in Fig. 3.7a, information is unlikely to flow between individuals in

the same level compared with normal email traffic, and two extreme cases

clearly stand out – either bottom up or top down the hierarchy. It tells us

that, while the communication between different hierarchies does not yield

a faster or slower response, it does matter when determining whether one

would decide to pass on the information or not in the first place. Moreover,

Fig. 3.7b further confirms the non-homophily effect that the information

tends to flow between individuals at a larger distance in the formal organi-
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zational structure. This effect shows that “informal networks” and “formal

networks” complement each other in information spreading.
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Figure 3.7: Probability ratio of email forwarding as a function of (a) hierar-
chical level difference and (b) organizational distance between initiators and
spreaders. The information spreading exhibits some non-homophily effect.

3.3.4 Individual Characteristics

Another factor that may impact the efficiency of information spreading re-

lates to the individual characteristics of those participating in the spreading

process. Do people with different work performance behave differently in

getting the word out? A natural hypothesis is that people with better perfor-

mance are more efficient in spreading the information. While it is generally

difficult to get a quantitative measurement of individual performance, the

mentioned “billable hours” data serves this purpose. As a consultant’s per-

formance is directly related to the total revenue s/he generates, this unique

data offers us an opportunity to explore for the first time how individual char-
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Figure 3.8: Information delay time in hours versus individual performance
for (a) initiators and (b) spreaders. The efficiency of the spreading is little
affected by individual performance.

acteristic affects the information spreading process. To test this hypothesis,

we look at whether there is a correlation between the delay time of infor-

mation spreading and the performance of the individuals. We find that the

hypothesis is not supported by our data. We show in Fig. 3.8 the correlation

between the median information’s waiting time in hours and the performance

of initiators and spreaders, respectively. The dashed grey lines show the 25%

quantiles. The information’s waiting time appears to be constant for both

initiators and spreaders, independent of individual performance.
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3.4 Macroscopic information spreading in con-

text

We now go beyond information pathways and turn our attention at the

macroscopic level, aiming to understand to what degree spreading processes

rely on contextual factors. That is, to how many people a user forwards

the information and the information reaches in total. Our dataset con-

tains more than 2000 threads3. Each thread can be treated as a rooted

tree (Fig. 3.9),where information spreads from one user to others.

We focus on two questions: (i) what are the generic properties of the tree

structures within spreading processes? (ii) how much contextual information

do we need to incorporate in the models in order to capture these properties?

We found, in contrast to the narrow and deep trees observed in previous

studies [74, 45], that the trees in our study are bushy yet shallow. The

information fans out, but quickly dies out. We further demonstrated that

the way information fans out, i.e., to how many people a user forwards the

information, features a high degree of randomness, being independent of

3Since we did not have all the communications within the enterprise, we were left with
a relatively small number of threads. The readers might be curious whether this sampling
issue would affect our observations of the tree structures. As our upcoming stochastic
model, which well captures the empirical observations, is purely based on the intrinsic
media properties of email systems (i.e., number of recipients n in each email, and its
distribution Pn(n)), we can therefore validate our results by checking the distribution
of n across different datasets. To this end, we measured this quantity in other email
datasets([37] and [36]). We found that all email datasets to date share the common
feature that Pn(n) universally follows a fat-tailed distribution, indicating that our results
are robust to sampling.
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Aug 5, 09:30:12 "data request"

Aug 5, 09:53:00 "Fw: data request"

Aug 6, 14:21:53 "Fw: Fw: data request"

Figure 3.9: An illustrative example of an information spreading tree. This
tree is of size 8, width 4, and depth 3.

the connectivity of spreaders in the underlying social network. The overall

structural properties of spreading processes can be captured surprisingly well

by a simple stochastic model, indicating that information spreading is largely

independent of context at the macroscopic level.

3.4.1 Empirical Observations

In this subsection we report the main observations about structural proper-

ties of the threads. These observations build the foundation of our models.

In summary, there are two interesting findings regarding the observed trees,

which can not be interpreted intuitively by existing models.

• Ultra-shallow trees: Almost 95% of trees are of depth 2, and trees

with more than 4 hops are absent.
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• Stage dependency: The branching factor (number of children each

node has) depends on the distance from the root.

Tree size, width, and depth

10
0

10
1

10
2

10
3

10
4

10
−6

10
−4

10
−2

10
0

size

P
(s

iz
e

)

 

 

empirical

model

10
0

10
1

10
2

10
3

10
−6

10
−4

10
−2

10
0

width

P
(w

id
th

)

 

 

empirical

model

0 2 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

depth

P
(d

e
p

th
)

 

 

empirical

model

Figure 3.10: Distributions of size, width, and depth of the trees. Empiri-
cal measurements are denoted as blue squares, while the grey triangles are
predictions of existing models. Dashed lines are guides for the eye, with an
exponent of 2.5. The existing models overestimate the tails of the distribu-
tions.

The size, width, and depth of a tree are its three most important struc-

tural characteristics. The size of a thread is defined as the total number of

people involved in the spreading process; the width of a tree is the maximum

of number of nodes in each level among all levels of the tree; depth is the

length of the longest path from a leaf to the root. (As our forwarding process

is conditioned on the emails that were forwarded, the minimum depth of the

trees is 2). The distributions of size and width both follow a power law4,

with an exponent of 2.67 and 2.53, respectively (Fig. 3.10). While the power

law distribution itself is not unexpected, what is surprising is that the tails of

4The likelihood of power law distributions and the exponents hereafter are assessed by
applying the techniques in [23].
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these two distributions have similar exponents. This fact directly implies, as

shown in Figure 3.11, that the size of the trees grows almost linearly with the

width (a power law relation with exponent around 1). Moreover, we observe

that the tree structures extracted from email forwarding activities are ultra

shallow: 95% of the trees are of depth 2, and the distribution of depth decays

so fast that we don’t observe any tree of depth greater than 4 within 2000+

samples.
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Figure 3.11: Scatter plot of the size and the width of the trees. The size of
the tree grows almost linearly wrt the width of the tree.

These findings are puzzling when we apply the classical model for gener-

ating a random tree structure: a Galton-Watson branching process [111], in

which each node has a random number of children κ, drawn independently

according to the same distribution, denoted as P (κ). Previous work [45] has

shown that, despite the complexities of the process, this simple model fits

the data quite well. We therefore follow the modeling procedure of [45] to fit
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our observation. We first compute the parameters P (κ) of a Galton-Walton

process by using maximum-likelihood estimation. Then we simulate the pro-

cess and generate the same number of trees as empirical measurements. The

distribution of size, width and depth, plotted as grey triangles in Fig. 3.11,

follow a power law, with an exponent of 1.96 and 2.11. Clearly, directly

applying this procedure significantly overestimates the tails of distributions,

generating trees that are much bigger and deeper than observed empirically.

Most prominent is the depth distribution. For trees that are in the subcritical

regime, i.e., the mean µ of P (κ) is less than 1 (µ < 1), the depth distribu-

tion has an exponential tail [51]. However, the measured depth distribution

decays much faster than the model prediction.

In summary, the trees we observed here are bushy yet very shallow, which

implies that the information spreads efficiently, reaching out to many people

then quickly dying out.

Stage dependence

The observations above raise an important question: does the information

spreading process change in different stages? We therefore compute the con-

ditional probability of κ given the distance to the root d, P (κ | d), in Figure

3.12. In a Galton-Watson branching process, P (κ) is universal across all

nodes, therefore independent of d, predicting the collapse of curves in the

plot. We observe that, however, the branching process does depend on the

distance to the root. The power law exponent γ0 of P (κ) when d = 0 ap-
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Figure 3.12: Distribution of branching factors κ conditioned on the distance
to the root of the tree d. The branching process depends on the spreading
stages.

proximately satisfies γ1 = γ0 + 1, where γ1 is the exponent of P (κ) when

d = 1. (γ0 = 2.48 and γ1 = 3.48). The distribution of κ becomes steeper

as we move deeper down the trees, corresponding to the stage dependence,

which was also observed in a recent study [66] regarding how online conver-

sation forms yet remained unclear why the exponent of P (κ) changes with

d, indicating that this effect is generic among different settings, and a model

that could appropriately capture this feature would be of great importance

in enhancing our understanding of social systems.

3.4.2 Modeling the information spreading process

What is the underlying mechanism that governs the information spreading

process? Our goal here is to explore how much contextual information we
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Figure 3.13: Distribution of branching factors κ conditioned on the degree
of the node k. The branching factors are independent on the degree connec-
tivity.

need to rely on to model the observed macroscopic structural properties of

the trees in Sec. 3.4.1, aiming to quantify to what extent spreading processes

at the macroscopic level depend on context.

The observed fat-tailed distributions of branching factors κ in Fig. 3.12

help us assess the properties of nodes in the underlying social network. As

shown in Fig. 3.4, the degree distribution, P (k), is also fat tailed [9, 6, 17].

Indeed, individuals are connected differently in the network. While most

people have only a few connections, there are a notable number of individ-

uals who have many social neighbors. This raises an important question:

to what extent does the information spreading process depend on the un-

derlying social network? First off, the branching factor κ for an individual

in the spreading process is upper-bounded by the total number of connec-

tions s/he has. Yet beyond that, it is important to inspect whether there
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is a correlation between k and κ. This question has a number of important

implications. In the viral marketing case for example, where the underlying

social network is usually not visible, the correlation between k and κ will

tell us whether it is a good marketing strategy to carefully choose the seed

populations to spread an advertisement. A positive correlation suggests that

it does matter who you choose to start the spreading, as social hubs would

tend to send the information to more people. Yet if the correlation is not so

strong, one could argue that perhaps it is not so important how one chooses

the seed population. Another example comes from the difference between the

spreading of information and diseases. Indeed, diseases spread from a seed to

many others through networks, bearing high level similarity to the spread-

ing of information. The models of epidemics commonly rely on infection

rates, where better connected nodes infect more neighbors, corresponding to

a strong correlation between k and κ. Therefore, understanding to what ex-

tent information spreading relies on the context of underlying network would

quantitatively assess the difference between these two spreading processes,

arguing whether the existing epidemic models are applicable to the spreading

of information.

The correlation between k and κ can be examined by empirically measur-

ing the conditional probability P (κ | k). Indeed, as P (κ) =
∫
P (κ | k)P (k)dk,

if κ is largely uncorrelated with k, P (κ | k) can therefore be factored out of

the integral, giving P (κ) = P (κ | k), leading to a data collapse when plot-

ting P (κ) in different curves by grouping individuals of similar k. We show
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in Fig. 3.13 the conditional probability P (κ | k) for two different stages of

spreading (d = 0 vs. d = 1), respectively. Surprisingly, we observe very good

collapse for different k in both figures, which indicates that there is no direct

correlation between k and κ. The breadth of the dissemination of informa-

tion is independent of the connectivity k of individuals. This indicates, while

to whom a user forwards the information indeed depends on the underlying

social network (as shown in Sec. 3.3.1), to how many people (κ) one would

forward the information does not.
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Figure 3.14: The distribution of the number of recipients for each email Pn(n)
is fat-tailed.

The surprising independence of node properties of the information spread-

ing process leads us to question its dependence on the media properties of

email systems. Therefore, we model the spreading processes by mimicking

the way emails are sent. Indeed, an important feature of email communica-

tion, distinguishing it from other forms of communication, like cell phones,
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Figure 3.15: P (κ) for d = 0 and d = 1, model prediction (solid lines) vs. ex-
periment measure (scattered squares and circles). Our model well captures
the stage dependence phenomenon of information spreading.

is the ability to send a message to multiple recipients at the same time.

Therefore, the distribution of the number of recipients for all the emails be-
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Figure 3.16: Size, width, and depth distributions of model prediction (tri-
angles) with empirical observations (squares). The model matches well with
observations. Note the last point in depth distribution is biased by empirical
finite size effect, lower bounded by N−1.

ing sent should follow some non-trivial form, other than δ(1) in cell phones,

i.e., each phone call is made to one recipient only. Let us denote the distri-

bution for emails system as Pn(n) for now, where n represents the number
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of recipients in each email. While some emails are forwarded, many more

are not. The easiest way to look at email forwarding is to treat it as an

independent decision making process, where each recipient with probability

p forwards the information, or probability 1 − p does nothing. As email

forwarding represents a small fraction of overall email traffic, p should be a

small number. When a recipient decides to forward the email, s/he draws

a random number from the distribution Pn to decide how many people to

send the emails. So the distribution of branching factors should follow the

same distribution as Pn, from which the random numbers were drawn, giving

P (κ) = Pn(κ). However, this should only hold for the case of d > 0. Indeed,

as our study is focused on the emails that are forwarded, there should be an

extra term for correcting this conditional probability when d = 0. That is,

the original emails with more recipients are more likely to get forwarded, as

there will be more people to make a decision whether or not to pass on the

information. Following this mechanism, the distribution of branching factors

at depth 0, P (κ | d = 0), follows

P (κ | d = 0) = A (1− (1− p)κ)Pn(κ)

= A
(
1− eκ ln(1−p))Pn(κ)

(3.1)

where A is the normalization factor, whereas P (κ | d > 0) follows

P (κ | d > 0) = Pn(κ) (3.2)
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In the limit of p → 0, to the leading power, the relationship between the

scaling exponent γ0 of P (κ | d = 0), and γ1 of P (κ | d = 1), follows the

simple relation γ1 = γ0 + 1 if κ � −1/ ln(1 − p) ≈ 1/p, and γ1 = γ0 if

κ� −1/ ln(1− p) ≈ 1/p.

Both parameter p and function Pn can be measured independently from

our data, yielding p = 0.012 and a fat-tailed distribution Pn (Fig. 3.14).

We can therefore simulate the distributions of size, width, and depth using

these two measured parameters. The results are shown in Fig. 3.16, with

observations as squares and model predictions as triangles. Surprisingly,

they all match the empirical observations very well. The distributions of

size and width follows a power law, with an exponent of 2.63 and 2.51,

very close to the empirical observations (2.67 and 2.53). Furthermore, the

observation of stage dependence could be verified analytically by plugging

the parameters into eqs. (3.1) and (3.2), as plotted in blue and red lines in

Fig. 3.15, respectively. It is also very well captured by the model.

The model we described above for email forwarding processes is purely

stochastic and has two parameters, p and Pn, which are measured from our

email dataset independently. Perhaps unexpectedly, such a simple model ex-

plains a great deal of observations. This, together with Fig. 3.13, indicates

that, despite the complexity in real life, the macroscopic structures of infor-

mation spreading processes are largely independent of contextual information

and can be well captured and explained via simple machanisms.
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3.5 Conclusions and Future Work

Applications of social systems rely on our understanding of information

spreading patterns. In this work, by combining two related but distinct large

scale datasets, we address the factors that govern information spreading at

both microscopic and macroscopic levels. We found, microscopically, whom

the information flows to indeed depends on the structure of the underlying

social network, individual expertise and organizational hierarchy. The per-

formance of individuals has little influence on the efficiency of spreading, yet

departmental constraints do slow down the process. At the macroscopic level,

however, although seemingly complex, the structural properties of spreading

trees, i.e., to how many people a user forwards the information and the total

coverage the information reaches, can be well captured by a simple stochas-

tic branching model, indicating that the spreading process follows a random

yet reproducible pattern, largely independent of context. We believe that

our findings could guide users to build better social and collaborative ap-

plications, design tools and strategies to spread information more efficiently,

improve information security, develop predictive tools for recommendation

systems, and more.

Future directions mainly fall into two lines. The first is to develop a better

prediction model for information flow. Indeed, upon understanding to whom

one forwards information, when one would forward it, and to how many

people, the question thereafter is can we build a better prediction model
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of the flows? The second direction is about the mutation of information.

People sometimes add extra information or express opinions about existing

information when passing along the originals to others. How does information

mutate along the way? How does the mutation of information affect the

patterns of spreading? These questions stand as missing chapters in our

understanding of spreading processes. Indeed, with the availability of large-

scale email datasets, thorough inspection of the email message contents will

reveal the dynamics of information itself, which in turn can yield better

predictive tools for information spreading.
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Chapter 4

Connections between Human

Mobility and Social Networks

4.1 Introduction

Social networks have attracted particular interest in recent years, largely

because of their critical role in various applications [35, 17]. Despite the

recent explosion of research in this area, the bulk of work has focused on

the social space only, leaving an important question of to what extent indi-

vidual mobility patterns shape and impact the social network, largely unex-

plored. Indeed, social links are often driven by spatial proximity, from job-

and family-imposed shared programs to joint involvement in various social

activities [91]. These shared social foci and face-to-face interactions, repre-

sented as overlap in individuals’ trajectories, are expected to have significant
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impact on the structure of social networks, from the maintenance of long-

lasting friendships to the formation of new links.

Our knowledge of the interplay between individual mobility and social

network is limited, partly due to the difficulty in collecting large-scale data

that record, simultaneously, dynamical traces of individual movements and

social interactions. This situation is changing rapidly, however, thanks to

the pervasive use of mobile phones. Indeed, the records of mobile commu-

nications collected by telecommunication carriers provide extensive proxy of

mobility patterns and social ties, by keeping track of each phone call between

any two parties and the localization in space and time of the party that initi-

ates the call. The high penetration of mobile phones implies that such data

captures a large fraction of the population of an entire country. The avail-

ability of these massive CDRs (Call Detail Record) has made possible, for

instance, the empirical validation in a large-scale setting of traditional social

network hypotheses such as Granovetter’s strength of weak ties [83], the de-

velopment of a first generation of realistic models of human mobility [47, 98]

and its predictability [99]. Indeed, despite the inhomogeneous spatial resolu-

tion (the uneven reception area of mobile phone towers) and sampling rates

(the timing of calls), the large volume of CDR data allows us to reconstruct

many salient aspects of individual daily routines, such as the most frequently

visited locations, and the time and periodicity of such visits. Therefore, these

data serve as an unprecedented social microscope helping us scrutinize the

mobility patterns together with social structure and the intensity of social
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interactions.

In this work, we follow the trajectories and communication patterns of

approximately 6 Million users over three months, by using CDR data from

an anonymous country, aiming to measure for any pair of users u and v:

• How similar is the movement of u and v. For this purpose, we introduce

a series of co-location measures quantifying the similarity between their

movement routines, prompting us to call them the mobile homophily

between u and v.

• How connected are u and v in the social network. For this purpose, we

adopt several well-established measures of network proximity, based on

the common neighbors or the structure of the paths connecting u and

v in the who-calls-whom network.

• How intense is the interaction between u and v. For this purpose we

use the number of calls between u and v as a measure of the strength

of their tie.

Our analysis offers empirical evidence that these three facets, co-location,

network proximity and tie strength, are positively correlated with each other.

In particular, we find that the higher the mobile homophily of u and v, the

higher the chance that u and v are strongly connected in the social net-

work, and that they have intense direct interactions. These findings uncover

how the social network, made of numerous explicit who-calls-whom ties, is
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embedded into an underlying mobility network, made with the implicit ties

dictated by the mobile homophily.

The emergence of such surprising three-fold correlation hints that it is

conceivable, to some extent, to predict one of the three aspects given the

other two. Indeed, we demonstrate in this study how the predictive power

hidden in these correlations can be exploited to identify new ties that are

about to develop in a social network. Specifically, we study the influence of

co-location and mobile homophily in link prediction problems, asking: what

is the performance of mobility-based measures in predicting new links, and

can we predict more precisely whether two users u and v (that did not call

each other in the past) will call each other in the future, by combining the

measurements of their network proximity and mobile homophily? Our key

findings are summarized as follows:

• The mobility measures on their own carry remarkably high predictive

power, comparable to that of network proximity measures.

• By combining both mobility and network measures, we manage to sig-

nificantly boost the predictive performance in supervised classification,

detecting interesting niches of new links very precisely. For example, by

considering a subset of potential links (pair of users) with high network

proximity and mobile homophily, we are able to learn a decision-tree

classifier with a precision of 73.5% and a recall of 66.1% on the positive

class. In other words, only approximately one fourth of the predicted
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new links were false positives, and only one third of the actual new

links were missed by the predictor.

To the best of our knowledge, this work presents the first assessment of

the extent individuals’ daily routines as a determinant of social ties, from em-

pirical analysis to prediction models. With recent proliferating advances on

human mobility and social networks, we believe our findings are of fundamen-

tal importance in our understanding of human behavior, provide significant

insights towards not only link prediction problems but also the evolution and

dynamics of networks, and could potentially impact a wide array of areas,

from privacy implications to urban planning and epidemic prevention.

4.2 Mobile Phone Data

Currently the most comprehensive data that contains simultaneously both

human mobility and social interactions across a large segment of the pop-

ulation is collected by mobile phone companies. Indeed, mobile phones are

carried by their owners during their daily routines. As mobile carriers record

for billing purposes the closest mobile tower each time the user uses his phone,

the data capture in detail individual movements. With almost 100% pene-

tration of mobile phones in industrial countries, the mobile phone network

is the most comprehensive proxy of a large-scale social network currently in

existence. We exploit in this study a massive CDR dataset of approximately

6 Million users, which, to the best of our knowledge, is the largest dataset
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analyzed to date containing both human trajectories and social interactions.

We focused on 50k individuals selected as the most active users (identical to

those that were studied in a recent publication [99]), following not only their

trajectories but also their communication records during 14 successive weeks

in 2007.

The resulting dataset contains around 90M communication records among

the individuals, and over 10k distinct locations covering a radius of more than

1000 km. Each record, for our purposes, is represented as 4-tuple 〈x, y, t, l〉,

where user x is the caller, user y is the callee, t is the time of the call, and

l is the location of the tower that routed the call. The temporal granularity

used in this study is the hour, justified by the finding in [47, 99, 98]. Let

V denotes the set of users. For each user x ∈ V , the total number of calls

initiated by x is denoted as n(x). For x’s i-th communication, where 1 ≤ i ≤

n(x), the time stamp, location, and the contacted user are denoted as Ti(x),

Li(x) and Ni(x), respectively. Given a time interval between t0 and t1, the

set of communications between pairs of users occurred within the interval

is denoted as E[t0, t1] ≡ {(x, y)|x, y ∈ V, ∃i, 1 ≤ i ≤ n(x), t0 ≤ Ti(x) <

t1, Ni(x) = y}. In other words, we add an edge (x, y) if there has been at least

one communication between x and y in the interval. Therefore, G[t0, t1] ≡

{V,E[t0, t1]} is the resulting social network within the time interval.

To prepare for the link prediction experiments, we further separate our

data into 2 parts: first 9 weeks for constructing the old network and the rest

5 weeks for the new network. For each link e ∈ E, we classify it according
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to its time stamp t(e). Et ≡ {e|e ∈ E, t ≤ t(e) < t + 1} is defined as the

set of edges of the resulting network after aggregating the communications

in the t-th week. The “past” and “future” sets are therefore denoted as

Eold =
⋃9
t=1 Et and Enew =

⋃14
t=10Et. In our study, we focus on nodes in the

largest connected component Gold = {Vold, Eold}, where we observe in total

|Vold| = 34, 034 users and |Eold| = 51, 951 links.

4.3 Network Proximity

General approaches in link prediction tasks have been focused on defining

effective network based “proximity” measures, so that two nodes that are

close enough on the graph but not yet connected may have a better likelihood

of becoming connected in the future. As the main focus of the paper is

to explore the predictive power of mobility compared and combined with

topological predictors, we selected four representative quantities which have

been proven to perform reasonably well in previous studies (for more details

of the quantities and their performance on citation networks, see [75].)

• Common neighbors. The number of neighbors that nodes x and y have

in common. That is, CN(x, y) ≡ |Γ(x) ∩ Γ(y)|, where Γ(x) ≡ {y|y ∈

V, (x, y) ∈ E} is the set of neighbors of x.

• Adamic-Adar [2]. A refinement of CN(x, y) by weighting common

neighbors based on their degrees, instead of simple counting. Therefore
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Figure 4.1: The probability density function P (lt|t+1) that a link has chem-
ical distance l in previous week. Inset: the probability density function of
chemical P (lt) for different weeks.

the contribution from hubs to common neighbors is penalized by the

inverse logarithm of their degree.

AA(x, y) ≡
∑

z∈Γ(x)∩Γ(y)
1

log |Γ(z)| .

• Jaccard’s coefficient. Defined as the size of the intersection of the neigh-

bors of two nodes, Γ(x) and Γ(y), divided by the size of their union,

characterizing the similarity between their sets of neighbors.

J(x, y) ≡ |Γ(x) ∩ Γ(y)|/|Γ(x) ∪ Γ(y)|.

• Katz [60]. Summation over all possible paths from x to y with exponen-

tial damping by length to weight short paths more heavily. K(x, y) ≡∑∞
l=1 β

l · |pathslx,y|, where pathslx,y is the set of all paths with length l

from x to y (damping factor β is typically set to 0.05.)

113



Most network proximity measures are related to the chemical distance

on the graph, under the natural assumption that new links are more likely

to occur between nodes that are within a small distance on the graph. The

chemical distance l(x, y|E) is defined as the length of the shortest path be-

tween two nodes x and y. l(x, y|E) = 1 implies that nodes x and y are

connected, or (x, y) ∈ E. The role of chemical distance on tie formation can

be tested directly by measuring the probability P (lt|t + 1) for a new link

e ≡ (x, y) ∈ Et+1 to have a chemical distance lt measured at previous week

t. That is, P (lt|t + 1) ≡ |{e|e ≡ (x, y) ∈ Et+1, l(x, y|Et) = lt}|/|Et+1|. This

distribution is shown in Fig. 4.1, different colors indicating different time

windows t. We find, first of all, P (lt|t + 1) is stable over different weeks (1

through 14), indicating that the aggregation process we adopted to construct

the network is robust, and that P (lt|t+1) is largely independent wrt the time

windows. Second, P (lt|t + 1) decays rapidly as lt increases, consistent with

previous study [71] on other data sets. This implies that the majority of new

links are between nodes within two hops from each other, i.e., nodes with

common neighbors. Third, the Poisson distribution of the chemical distance

for arbitrary pairs (inset of Fig. 4.1) suggests that the most probable distance

for two users to form a link at random is around 12, while it is only 2 for

pairs that do form new links.
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a b

Figure 4.2: a) The probability two users i and j have distance d(i, j) > D.
b) The probability two users i and j have Co-Location CoL(i, j) (solid) and
Spatial Co-Location SCoL(i; j) (dashed) greater than x.

4.4 Mobile Homophily

Similar to the graph-based approaches, a natural strategy to predict new

links by leveraging mobility information is to look for quantities that capture

some degree of closeness in physical space between two individuals. Indeed,

people who share high degree of overlap in their trajectories are expected to

have a better likelihood of forming new links [91]. Therefore, we explored a

series of quantities aiming to define the similarity in mobility patterns of two

individuals.

• Distance. Let

ML(x) ≡ argmaxl∈LocPV (x, l)

be the most likely location of user x, where Loc is the set of all locations
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a b c d e

Figure 4.3: Correlations between mobility measures (CoL and SCos) and a)
Common Neighbor, b) Adamic Adar, c) Jaccard Coefficient, d) Katz, and
e) link weight. The upper panels show the mean values, whereas the lower
panels show the standard deviations

(cell phone towers), and

PV (x, l) ≡
n(x)∑
i=1

δ (l, Li(x)) /n(x)

is the probability that user x visits location l1. We define d(x, y) ≡

dist(ML(x),ML(y)) as the distance between two users x and y, repre-

senting the physical distance between their most frequented locations.

• Spatial Co-Location Rate. The probability that users x and y visit at

the same location, not necessarily at the same time. Assuming that

the probability of visit of any two users are independent, we define:

SCoL(x, y) ≡
∑
l∈Loc

PV (x, l)× PV (y, l)

1Here δ(a, b) = 1 if a = b, 0 otherwise.
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• Spatial Cosine Similarity. The cosine similarity of user x and y’s trajec-

tories, capturing how similar their visitation frequencies are, assigned

by the cosine of the angle between the two vectors of number of visits

at each location for x and y.

SCos(x, y) ≡
∑
l∈Loc

PV (x, l)× PV (y, l)

‖PV (x, l)‖ × ‖PV (y, l)‖

• Weighted Spatial Cosine Similarity. The tf-idf version of cosine simi-

larity of the visitation frequencies of users x and y, where the contri-

bution of each location l is inversely proportional to the (log of) its

overall population in l. Coherent with the tf-idf idea in information

retrieval, this measure promotes co-location in low-density areas, while

penalizes co-location in populated places.

• Co-Location Rate. The probability for users x and y to appear at the

same location during the same time frame (hour):

CoL ≡

n(x)∑
i=1

n(y)∑
j=1

Θ (∆T − |Ti(x)− Tj(y)|) δ (Li(x), Lj(y))

n(x)∑
i=1

n(y)∑
j=1

Θ (∆T − |Ti(x)− Tj(y)|)

where Θ(x) is the Heaviside step function, and ∆T is set to 1 hour. This

quantity takes into account the simultaneous visits of two users at the

same location, i.e., both spatial and temporal proximity, normalized by

the number of times they are both observed at the same time frame.
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• Weighted Co-Location Rate. The tf-idf version of CoL, i.e., the prob-

ability for two users x and y to co-locate during the same hour, nor-

malized by the (log of) population density of the co-location at that

hour.

• Extra-role Co-Location Rate. The probability for two users x and y

to co-locate during the same hour at night or weekends. As shown in

[34], close proximity of two individuals during off-hours may serve as a

powerful predictor for symmetric friendship.

The quantities listed above either aim at measuring the geographical

closeness or the degree of trajectory overlap of two individuals, characterizing

their mobile homophily. It should be noted that it is not obvious whether the

spatiotemporal co-location measures, e.g., CoL, would yield better estimates

of the probability of face-to-face interactions than spatial only measures, e.g.,

SCoL. Indeed, on one hand, CoL quantifies the co-presence of two users in

the same place around the same moments, corresponding to a high likelihood

of meeting face-to-face. Yet there are circumstances where two users do co-

locate but are not captured by the data if any one of them did not place any

phone calls. And this latter case is captured to some extent by SCoL, as the

necessary condition for two individuals to meet is the spatial overlap of their

trajectories.

We now explore the distributions of the various measures over the linked

pairs of individuals (x, y) ∈ Eold. In Fig. 4.2a we show the complementary
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Table 4.1: Pearson Coefficients
CoL Scos CN J AA K w dML

CoL 1 0.76286 0.25359 0.19618 0.2251 0.18952 0.14521 -0.17894
Scos 0.76286 1 0.30789 0.25657 0.28679 0.24933 0.14402 -0.24938
CN 0.25359 0.30789 1 0.82384 0.88147 0.81108 0.11348 -0.10136
J 0.19618 0.25657 0.82384 1 0.94437 0.99939 0.05989 -0.098562
AA 0.2251 0.28679 0.88147 0.94437 1 0.93806 0.086881 -0.10126
K 0.18952 0.24933 0.81108 0.99939 0.93806 1 0.053842 -0.095631
w 0.14521 0.14402 0.11348 0.05989 0.086881 0.053842 1 -0.029339

dML -0.17894 -0.24938 -0.10136 -0.098562 -0.10126 -0.095631 -0.029339 1

cumulative distribution function (CCDF) of geographical distances d(x, y).

We find that d(x, y) follows a fat-tailed distribution, consistent with previ-

ous studies [67, 63, 73], meaning that while most friends live close to each

other, there are also friends who are far apart. The CCDF plots of CoL and

SCoL are shown in Fig. 4.2b as solid and dashed line, respectively. SCoL

measures the probability for two users to appear at the same location, cap-

turing, spatially, the degree of trajectory overlapping. CoL quantifies the

probability of appearing at the same place around the same time, charac-

terizing the spatio-temporal overlap of trajectories. We find that “friends”

typically do co-locate, in that most pairs (x, y) ∈ Eold exhibit non-zero spa-

tial or spatio-temporal overlap in their trajectories, and such overlap decays

very fast.
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4.5 Correlation between mobile homophily and

network proximity

We explore a series of connections between similarity in individual mobility

patterns and social proximity in the call graph, by measuring the correlation

between the proposed mobility and network quantities, using again the edges

in Gold. We also consider the strength of the ties in the network, quantified

by the number of calls placed between any two users (during the first 9 weeks

of our observation period.) In Fig. 4.3, we plot the mean values and the stan-

dard deviations of Common neighbors, Adamic-Adar, Jaccard’s coefficient,

Katz, and the strength of social ties for different values of Co-Location and

Spatial Cosine Similarity, discretized by logarithmic binning. We find that

the quantities that characterize the proximity in the social graph systemati-

cally correlate with mobility measures. The more similar two users’ mobility

patterns are, the higher is the chance that they have close proximity in the

social network, as well as the higher is the intensity of their interactions.

Furthermore, Fig. 4.4 demonstrates that the geographical distance between

two individuals decays logarithmically with mobility measures. We omit the

plots where the network proximity measures and the tie strength are on the

x-axis, due to space limitations, but we observe a qualitatively similar trend

in all cases. The Pearson coefficients of each pairs of variables are reported in

Table 4.1. It is interesting to observe that tie strength, although conceived as

a network measure, is more strongly correlated with mobile homophily than
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with network proximity measures.

a b

Figure 4.4: Correlations between mobility measures (CoL and SCos) and
distance between two individuals. (mean values in a and standard deviations
in b)

Taken together, our results indicate that mobile homophily, network prox-

imity and tie strength strongly correlate with each other. This fact implies

that mobile homophily is a viable alternate candidate to predict network

structures, and motivates the investigation of a novel approach to link pre-

diction that takes into account both mobility and network measures. More-

over, we find that the standard deviation for the correlation plots are not

small, hinting that there are extra degrees of freedom which allow us to fur-

ther improve our predictive power by using supervised classification methods

combining the mobility and network dimensions together.
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4.6 Link Prediction

4.6.1 Design of the link prediction experiment

We now study the link prediction problem in the context of our mobile social

network. Link prediction is a classification problem, aimed at detecting,

among all possible pairs of users that did not call each other in the past,

those that will communicate in the future. We define a potential link any

pair of users (u, v) such that (u, v) /∈ Eold, i.e., users u and v did not call each

other from week 1 through 9, and a new link any potential link (u, v) such

that (u, v) ∈ Enew, i.e., users u and v did not call each other from week 1

through week 9, but did call each other (at least once) from week 10 through

week 14. Finally, we define a missing link any potential link which is not a

new link, i.e., a pair of users that did not call each other in the entire period

from week 1 through week 14. For any potential link (u, v), let NL(u, v) be a

binary variable with value 1 if (u, v) is a new link, and 0 if (u, v) is a missing

link.

In this setting, link prediction is formalized as a binary classification

problem over the set of all potential links, where the class label is specified

by the NL variable, and the predictive variables are the network and mobility

quantities introduced in Sec. 4.3 and 4.4, measured over the first period from

week 1 through week 9. According to this formulation, we aim to predict

whether a potential link becomes a new link in the “future” based on the

observation of its “past” network connectedness and co-location.
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Our dataset consists of n = 34, 034 users and m = 51, 951 links, resulting

in (n(n− 1)/2)−m = 579, 087, 610 potential links. Yet the actual new links

are only 12, 484 – about 2 new links every 105 potential links! The significant

number of potential links creates obvious computational challenges, both in

terms of memory and time. Moreover, the huge disproportion between new

links and missing links implies an extreme unbalance between the positive

and negative class, which makes the classification task prohibitive. To cope

with both difficulties, we followed two complementary strategies for selecting

subsets of potential links: i) progressive sampling : we consider increasingly

large samples of missing links, up to some manageable size, and ii) links with

common neighbors : we concentrate on the interesting case of pairs of nodes

that are two hops away in the network, i.e., nodes with common neighbors,

and consider the entire population of potential links between such nodes.

We report below the results obtained in our link prediction analysis in both

cases.

Another dimension of our study is the kind of classification used. Adher-

ing to the machine learning terminology [76], we consider both unsupervised

and supervised link prediction:

• The unsupervised method, originally proposed in [75], consists in rank-

ing the set of potential links using one of the available network or

mobility quantities, and then classifying as new links the k top-ranked

potential links, where k is the expected number of new links (as mea-

sured in the dataset.) The rest are classified as missing links.
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predicted class = 0 predicted class = 1
actual class = 0 TN (true neg.) FP (false pos.)
actual class = 1 FN (false neg.) TP (true pos.)

Table 4.2: Confusion matrix of a binary classifier

• The supervised method consists in learning a classifier, e.g., a decision

tree, using a training set of new links and missing links, and then

classifying each pair as a new or missing link according to the class

assigned by the learned classifier.

Different unsupervised classifiers are obtained by considering the vari-

ous network and mobility measures, and different supervised classifiers are

obtained by considering different combinations of the same quantities as pre-

dictive variables. We systematically constructed the complete repertoire of

classifiers, based either on network quantities, or mobility quantities, or the

combination of the two; we then compared their quality and predictive power.

To this extent, we put particular attention on the metric used to assess a clas-

sifier, given that simple accuracy (over either the training or test set) is a

misleading measure for classifiers learned over highly unbalanced datasets.

Indeed, recall that in our case the trivial classifier that labels each potential

link as missing has a 99.998% accuracy. The real challenge in link prediction

is achieving high precision and recall over positive cases (new links), defined

in terms of the confusion matrix of a classifier (see Table. 4.2): precision =

TP
TP+FP

, and recall = TP
TP+FN

. Traditionally, precision and recall are combined

into their harmonic mean, the F -measure. However, we put more emphasis
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on precision, as the most challenging task is to classify some potential links as

new links with high probability, even at the price of a non negligible number

of false negatives. We also use lift and gain charts to compare the precision

of the various classifiers over the percentiles of the examined test cases.

4.6.2 Progressive sampling of missing links

In our first set of experiments we created various unsupervised and supervised

classifiers over the complete dataset of positive cases, i.e., 12,484 new links,

augmented with up to 51M negative cases of missing links. We assess the

precision achieved by each classifier when used with all 12,484 new links and

increasing fractions of missing links, i.e., to 1%, 25%, 50%, 75% and 100%

of the total 51M missing links sampled. Figure 4.5 summarizes our findings

for unsupervised classifiers. For each network/mobility quantity Q and each

dataset with increasing samples of missing links, we rank the potential links

in the dataset for decreasing values of Q, and the top ranked 12,484 links are

predicted as new links. Each line in Fig. 4.5 describes how the precision for

different quantities decays with the size of missing links. On the positive side,

all unsupervised classifiers are significantly better than random guessing,

and the decay of their precision tends to stabilize. Nevertheless, as these

51M links are only about 10% of the total missing links, we conclude that

all quantities exhibit modest predictive power. The most surprising finding

is that the co-location measures have a comparable precision to network

measures: slightly worse than best network predictors (Katz, Adamic-Adar),
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but better than Common Neighbors. Moreover, mobility measures have a

slower decay than network measures over increasing negative sample size.

The observation that the two classes of measures have approximately similar

predictive power offer further evidence that social connectedness is strongly

correlated with mobile homophily.
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Figure 4.5: Precision of unsupervised classifiers over increasing fractions of
missing links (1%, 25%, 50%, 75% and 100% of the total 51M missing links
sampled). Ranking is obtained using the various network and mobility mea-
sure; precision refers to the fraction of new links among the top-ranked 12,484
potential links; the precision of the random classifier is shown as baseline.

Figure 4.6 illustrates the supervised case: we consider the best classifiers

obtained using network and mobility measures, both in isolation and com-

bined together. Once again, we consider negative samples of increasing size,

up to 51M missing links, and measure the decay of precision as in the un-

supervised case. We considered a vast repertoire of classification algorithms
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(decision trees, random forests, SVM, logistic regression) under diverse pa-

rameter settings, and report in the chart the most robust classifiers, eval-

uated with cross validation, with strongest evidence against overfitting. In

the chart we also compare the precision of the supervised methods with that

of the best unsupervised predictor (Katz). We observe that the precision of

the supervised classifiers is about double of their unsupervised counterpart,

and mobility measures once again achieve comparable predictive powers to

the traditional network measures. The best precision, around 30% in the

51M case, is obtained using the network and mobility measures combined to-

gether. Therefore, using network measures in combination with co-location

measures yields a sensible improvement. Indeed, the probability of correctly

predicting a new link is 1500+ times larger than random guessing.

Potential links with common neighbors

To get better insight, we concentrate on the nodes that are two hops away

from each other in Eold, i.e., all potential links (u, v) of mobile users in our

complete network such that u and v have at least one common neighbor

during the first two months. The motivations behind this approach are two-

fold. First, most new links that do form belong to this category (Fig. 4.1), and

we hope to boost our prediction models by focusing on this most promising

set of links. Second, by focusing on these links, the total number of potential

links becomes computationally manageable, which enables us to assess the

asymptotic behavior of prediction accuracy.
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Figure 4.6: Precision of the best supervised classifiers found over increasing
fractions of missing links (1%, 25%, 50%, 75% and 100% of the total 51M
missing links sampled), using only network measures, only mobility measures,
and combination of both. Precision of best unsupervised classifier (K) and
random classifier is shown as baseline.

There are 266,750 potential links in this case, of which 3,130 (1.17%)

formed a new link. Note that, different from the previous case, we now

consider the entire population of missing links. We study the precision of

the unsupervised and supervised methods in this case. In the unsupervised

case, the precision for the different measures is computed by considering the

fraction of new links in the top-ranked 3,130 cases in the list ordered by the

precision of each measure in descending order:

As we now have a complete set of negative cases, we corroborate our find-

ings in Sec. 4.6.2 that mobility measures indeed yield remarkably high predic-

tive power in the unsupervised setting, comparable to network measures in
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Measure Precision
Katz 9.1%

Adamic-Adar 7.8%
Spatial Cosine Similarity 5.6%

Weighted Spatial Cosine Similarity 5.6%
Extra-role Co-Location Rate 5.1%
Weighted Co-Location Rate 5.1%

Common Neighbors 5.1%
Co-Location Rate 5.0%

Jaccard 3.0%

Table 4.3: Precision in unsupervised learning for different features

Li
ft

Figure 4.7: Lift chart of the best decision tree found in the dataset of potential
links with common neighbors; the x-axis represents the percentiles of the
potential links in the test set ranked by decreasing probability of being new
links, as specified by the learned classifier; a point (x, y) in the blue curve
represents the fact that y% of the actual new links are found when considering
the top-ranked x% potential links predicted as positive. The red straight line
is the lift of the random classifier. In our classifier, more than 85% new links
are found considering only the 10% most probable positive potential links.

the link prediction literature. Furthermore, various mobility measures have

very similar performance, indicating these measures all adequately capture

the similarity in mobility patterns.

In the supervised case, after systematic, yet heuristic, exploration of a
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pred. class = 0 pred. class = 1
actual class = 0 6.627 82
actual class = 1 117 228

Table 4.4: Classification result in supervised learning

large space of classification methods with different parameters, we construct

a decision-tree using Quinlan’s C4.5 classification over the combined network

and mobility measures, with cross validation to control over-fitting, applied

to the subset of potential links with common neighbors under the further

constraint AA > 0.5 and SCoL > 0.7. Our tree has the following confusion

matrix over an independent test set (1 = new link), implying a precision of

73.5% and a recall of 66.1%.

Both precision and recall are one order of magnitude larger than all previ-

ous figures. The lift chart (Fig. 4.7) for this classifier shows how, e.g., 86.4%

of new links are found by considering only the top 10% positive cases, as

ranked by the classifier in descending order of their probability of being new

links. Interestingly, we find that the classifier obtained with the procedure

discussed above, but using network measures only, has precision 36.2% and

recall 6.1%, suggesting that the combination of topology and mobility mea-

sures is crucial to achieve high precision and recall. In other words, learning

a supervised classifier based on combined network and mobility measures

significantly boosts the precision and recall of predicted new links. The price

to pay is that we need to focus on a niche of promising potential links with

high AA and Scos coefficients, concentrating on a relatively small number
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of candidates, yet for those we gain a very high probability of guessing the

correct new links. While stressing the use of specific classification techniques,

e.g., ad-hoc link prediction methods optimized for highly-unbalanced data,

such as HPLP [76, 22], to achieve better precision is beyond our goals here,

it is indeed an interesting open question for future research.

4.7 Related work

In this section, we review three categories of related work: studies on human

mobility patterns, link prediction in social networks, and interplay between

physical space and network structure.

4.7.1 Human Mobility

In the past few years, the availability of large-scale datasets, such as mobile-

phone records and global-positioning-system (GPS) data, has offered re-

searchers from various disciplines access to detailed patterns of human be-

havior, greatly enhancing our understanding of human mobility.

From statistical physics perspective, significant efforts have been made

to understand the patterns of human mobility. Brockmann et al. [16] tested

human movements using half a million dollar bills, finding that the dispersal

of bills is best modeled by continuous-time random walk (CTRW) models.

González et al. [47] then showed that each individual is characterized by

a time-independent travel distance and a significant probability to re-visit
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previous locations, by using mobile phone data of 100, 000 individuals. Song

et al. [98] then proposed a statistically self-consistent microscopic model for

individual human mobility. Researchers have also found individuals’ daily

routines are highly predictable, by using principal component analysis [33]

and measuring mobility entropy [99].

From data mining perspective, there have been a number of studies min-

ing frequent patterns on human movements. General approaches are based

on frequent patterns and association rules, and build predictive models for fu-

ture locations. To name a few, Morzy used a modified version of Apriori [81]

and Prefixspan [82] algorithms to generate association rules. Jeung et al. [57]

developed a hybrid approach by combining predefined motion functions with

the movement patterns of the object, extracted by a modified version of the

Apriori algorithm. Yavas et al. [118] predicted user movements in a mobile

computing system. Furthermore, Giannotti et al. [43, 44] developed trajec-

tory pattern mining, and applied it to predict the next location at a certain

level of accuracy by using GPS data [80].

4.7.2 Link prediction in social networks

Link prediction has attracted much interest in recent years after the semi-

nal work of Liben-Nowell and Kleinberg [75]. It is a significant challenge in

machine learning due to the inherent extreme disproportion of positive and

negative cases. Existing approaches have focused on defining various prox-

imity measures on network topology, to serve as predictors of new links in
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both supervised [5, 109, 76, 55] and unsupervised [75] frameworks. Most of

the empirical analyses are based on co-authorship networks, and the domain-

dependent features developed in certain studies (see, e.g., [5]) are tailored to

this particular data set. The supervised high-performance link prediction

method HPLP in [76, 55] has also been applied to a large phone dataset,

using only network proximity measures.

The fundamental difference of our study from this literature is that we

focus on the impact of human mobility, an intrinsic property of human be-

havior, on link prediction. Indeed, we have designed a broad range of mobile

homophily measures and explored their power in predicting new links. Our

research is orthogonal to the above line of research, in the sense that any

general link prediction method can be used in combination with our mobil-

ity features, e.g., the machine learning techniques for extremely unbalanced

classes.

4.7.3 Interplay between physical space and network

structure

Although it is in general difficult to obtain data that contain simultaneously

the geographical and network information, there have been a few interesting

attempts to assess the interplay between the two. For example, there is em-

pirical evidence [67, 63, 73] showing that the probability of forming a social

tie decays with distance as a power law. Based on this fact, Backstrom,
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et al. [7] introduced an algorithm that predicts the location of an individ-

ual. A few recent studies focused either on small populations of volunteers,

whose whereabouts and social ties were monitored at fine detail using ad-

hoc smart-phone applications [34] and location-sharing services [26], or on

large but specific online communities such as Flickr [25]. Although none of

these data could provide a society-wide picture of either social interactions

or individuals’ daily routines, these studies indeed indicate that the strong

correlation between physical space and network structures emerges in many

diverse settings.

4.8 Conclusions and future work

Recent advances on human mobility and social networks have turned the

fundamental question, to what extent do individual mobility patterns shape

and impact the social network, into a crucial missing chapter in our under-

standing of human behavior. In this work, by following daily trajectories

and communication records of 6 Million mobile phone subscribers, we ad-

dress this problem for the first time, through both empirical analysis and

predictive models. We find the similarity between individuals’ movements,

their social connectedness and the strength of interactions between them are

strongly correlated with each other. Human mobility could indeed serve as a

good predictor for the formation of new links, yielding comparable predictive

power to traditional network-based measures. Furthermore, by combining
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both mobility and network measures, we show that the prediction accuracy

can be significantly improved in supervised learning.

We believe our findings on the interplay of mobility patterns and social

ties offer new perspectives on not only link prediction but also network dy-

namics. At the same time, they also have important privacy implications.

Indeed, the surprising power of mobility patterns in predicting social ties

indicates potential information leakage from individuals’ movements to their

friendship relations, posing a new challenge in privacy protection. Further-

more, we believe our results could impact a wide array of phenomena driven

by human movements and social networks, from urban planning to epidemic

prevention.

The results presented in this paper also open up many interesting di-

rections for future research. The first is to search for improvement in link

prediction tasks by judiciously mixing mobility and network measures. For

example, we find that adding co-location measures into Adamic-Adar could

yield a precision of 9.6% in unsupervised classification, overtaking any tra-

ditional measures listed in the paper. While exhaustively searching for such

quantities is beyond our goals here, further work in this direction would

be very important. Another interesting direction is to look at the inverse

problem with respect to this work. Indeed, upon uncovering the strong cor-

relations between mobility similarity and social connectedness and predicting

links based on mobility patterns, the question thereafter is can we gain more

insights about individuals’ whereabouts by leveraging our knowledge of their
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social ties and activity patterns? In sum, the increasing availability of mobile

phone data and the emergence of location-based social networking websites

has the power to revolutionize our understanding of the interplay between

mobility and social networks, making this field particularly fallow for new

results.
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Chapter 5

Conclusions

The technology, together with continuous growth of the Web and the develop-

ment of Web 2.0, has inundated us with a remarkable amount of information.

These data have the potential to fundamentally transform our understand-

ing in a large variety of fields. In a much simplified view, with its scale and

reach, Big Data is like a newly invented telescope that would allow us to look

at the stars that we could not see before, offering us ample opportunities to

do things that are otherwise impossible. With its finer resolution and higher

precision, Big Data is also like a superb experimental apparatus that would

allow us to examine existing theory and to articulate and exhaust new mod-

els, offering us a chance to refine and improve our current understanding and

systems.

Among the questions outlined in this dissertations, many of them can

now be answered because of the availability of appropriate datasets. For ex-
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ample, the question about the interplay between human mobility and social

networks inevitably requires a large-scale dataset that could simultaneously

capture the information about both aspects over a massive population. Mo-

bile phone data serve nicely for this purpose. To probe the question of what

determines information dissemination, we need to compile a comprehensive

dataset that captures the spread of information as well as the context where

the spreading processes woven. However, while data seems to be the key to

starting these projects, the realization of these ideas was only made possible

through the thinking and tools developed in statistical physics. The products

are pleasant surprises with oversimplifications. Indeed, given the myriad of

factors involved in the recognition of a new discovery, from the work’s intrin-

sic value to timing, chance and the publishing venue, it is hard to imagine

the level of regularity and predictability we ended up documenting in this

dissertation. Similarly, while our decision in disseminating a specific piece of

information likely depends on a range of factors from its content to audiences,

the scale and reach of the spreading processes can be captured by a simple

stochastic model. These results support our hypothesis, that macroscopic

properties of a large-scale system follow generic and reproducible patterns,

independent of microscopic details.

As I type in the last paragraph of this dissertation with my laptop, I

cannot help but think back to the dawn of modern computing, when the

smallest computer takes up a whole room by itself in a rather cumbersome

way. This left me with a glimpse of thought—as if our second chapter had
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not taught us enough about the difficulties in predicting the future impact at

an early stage—If one day future historians look back to this data revolution,

what would they say about Big Data?
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Bouchaud, and A.L. Barabási. Dynamics of ranking processes in com-

plex systems. Physical Review Letters, 109(12):128701, 2012.

[14] John W. Boag. Maximum likelihood estimates of the proportion of pa-

tients cured by cancer therapy. Journal of the Royal Statistical Society.

Series B (Methodological), 11(1):pp. 15–53, 1949.

141



[15] Linda Briesemeister, Patric Lincoln, and Philip Porras. Epidemic pro-

files and defense of scale-free networks. WORM 2003, Oct. 27 2003.

[16] D. Brockmann, L. Hufnagel, and T. Geisel. The scaling laws of human

travel. Nature, 439(7075):462–465, 2006.

[17] G. Caldarelli. Scale-Free Networks. Oxford University Press, 2007.

[18] G. Caldarelli, A. Capocci, P. De Los Rios, and M.A. Muñoz. Scale-free
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[97] R.V. Solé, R. Ferrer-Cancho, J.M. Montoya, and S. Valverde. Selection,

tinkering, and emergence in complex networks. Complexity, 8(1):20–33,

2003.

[98] C. Song, T. Koren, P. Wang, and A.L. Barabási. Modelling the scaling

properties of human mobility. Nature Physics, 2010.

[99] C. Song, Z. Qu, N. Blumm, and A.L. Barabasi. Limits of predictability

in human mobility. Science, 327(5968):1018, 2010.

[100] David Strang and Sarah A. Soule. Diffusion in organizations and so-

cial movements: From hybrid corn to poison pills. Annual Review of

Sociology, 24(1):265–290, 1998.

[101] W.H. Suh, K.S. Suslick, G.D. Stucky, and Y.H. Suh. Nanotechnology,

nanotoxicology, and neuroscience. Progress in neurobiology, 87(3):133–

170, 2009.

[102] Hanghang Tong, B. Aditya Prakash, Charalampos Tsourakakis, Tina

Eliassi-Rad, Christos Faloutsos, and Duen Horng ”Polo” Chau. On the

vulnerability of large graphs. In ICDM, 2010.

152



[103] R. Ulrich and J. Miller. Information processing models generating log-

normally distributed reaction times. Journal of Mathematical Psychol-

ogy, 1993.

[104] Thomas W. Valente. Network models of the diffusion of innovations.

Computational & Mathematical Organization Theory, 2:163–164, 1996.

[105] G.J.P. VanBreukelen. Parallel information processing models compat-

ible with lognormally distributed response times. Journal of Mathe-

matical Psychology, 39(4):396–399, 1995.

[106] A. Vázquez, J.G. Oliveira, Z. Dezsö, K.I. Goh, I. Kondor, and A.-L.
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