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Quantifying patterns of research-interest evolution
Tao Jia1, 2*, Dashun Wang3, 4, 5* and Boleslaw K. Szymanski6, 7, 8*

To understand quantitatively how scientists choose and shift 
their research focus over time is of high importance, because 
it affects the ways in which scientists are trained, science is 
funded, knowledge is organized and discovered, and excel-
lence is recognized and rewarded1–9. Despite extensive investi-
gation into various factors that influence a scientist’s choice of 
research topics8–21, quantitative assessments of mechanisms 
that give rise to macroscopic patterns characterizing research-
interest evolution of individual scientists remain limited. Here 
we perform a large-scale analysis of publication records, and 
we show that changes in research interests follow a repro-
ducible pattern characterized by an exponential distribution. 
We identify three fundamental features responsible for the 
observed exponential distribution, which arise from a subtle 
interplay between exploitation and exploration in research-
interest evolution5,22. We developed a random-walk-based 
model, allowing us to accurately reproduce the empirical 
observations. This work uncovers and quantitatively analyses 
macroscopic patterns that govern changes in research inter-
ests, thereby showing that there is a high degree of regularity 
underlying scientific research and individual careers.

‘The essential tension’ hypothesis as described in ref. 5 has high-
lighted the conflicting demands of scientific careers that require 
both exploration and exploitation4,8,22. Indeed, career advancement, 
from promotion to obtaining grants, demands a steady stream of 
publications, which is often achieved through uninterrupted, yet 
incremental contributions to the existing, established research 
agenda. By contrast, frequent changes in research topics invite risk 
of failure and decreased productivity. The disciplinary boundaries, 
arising from factors such as implicit culture, tacit and accumulated 
knowledge23,24 and peer recognition3,25, together with intensifying 
specialization in science and engineering disciplines26, make radical 
shifts, such as moving from chemical biology to high energy phys-
ics, unlikely, if at all possible. On the other hand, although a steady 
and focused research portfolio helps scientists stay productive, it 
potentially undermines chances for originality8. Indeed, innovative 
and novel insights often emerge from encountering new challenges 
and opportunities associated with venturing into new topics and/or 
incorporating them into the existing research agenda4,15,20,27,28.

Given the broad effect on individual careers and strong impli-
cations for science and innovation policy, there is an urgent need 
for quantitative approaches to understand the nature of changes in 
research interests of individual scientists throughout their careers. 
This need becomes more urgent with the accelerating scale and 
complexity of scientific enterprise2,26,29,30. A variety of microscopic 
factors have been identified that drive a scientist’s choice of research 
problems, which range from age10,11 to gender12,13, to training and 

mentorship9,14, from funding or collaboration opportunities15–17, to 
serendipity18, to a scientist’s attitudes and abilities19, including risk 
aversion and creativity8,20,21. Yet, little is known about the macro-
scopic patterns that underlie the research-interest evolution. Recent 
advances in complex systems have uncovered regularities in various 
dynamical processes, which give rise to a family of powerful, yet flex-
ible statistical models that describe processes as diverse as human 
mobility31–34, temporal dynamics35–37 and the evolution of complex 
networks38–40. This prompted us to ask: to what degree could the 
research-interest evolution be captured by a simple model?

Here we aim to systematically address this question by first iden-
tifying patterns in the working scientists’ research agendas as their 
careers progress. Using articles published by American Physical 
Society (APS) journals covering over 30 years (1976–2009)41,42 and 
through a careful and extensive author-name disambiguation pro-
cess6,43, we collect publication records of individual authors over 
time (Supplementary Note 1). We further take advantage of the 
Physics and Astronomy Classification Scheme (PACS) codes used 
by the APS to classify topics in physics. Indeed, among all identifiers 
for research topics, PACS codes stand out in the frequency of their 
use30,44–48. This is partly because unlike topics defined by keywords, 
which are often created in an ad hoc, unstructured manner, the 
PACS code classification relies on both the crowd wisdom of work-
ing scientists and expert opinions of journal editors, offering a sys-
tematic representation of the subject of a paper. There are 67 main 
topics defined by the first two digits of the PACS code, covering 
diverse topics that range from general relativity and gravitation to 
nuclear structure to superconductivity. By sorting these PACS codes, 
we obtain a topic tuple for each paper, representing the research sub-
ject of each paper as a combination of the topics the paper studies28,30 
(Fig. 1). For a given set of papers published by a scientist, we gen-
erate a topic vector, the elements of which represent the weighted 
occurrence of each topic (see Methods). Therefore this vector cap-
tures not only the collection of topics a scientist studied, but also the 
level of involvements in each of these topics. Consequently, this vec-
tor represents a multi-dimensional measure of research interest of a 
scientist as revealed in the series of papers published by the author.

We compose two topic vectors based on the first and last m 
papers of the scientist (gi and gf, respectively), thereby capturing 
the research interest at the earliest and the latest stages of the career 
(Fig. 1). Using the complementary cosine similarity between gi and 
gf, we quantify the interest change J of a scientist throughout the 
career as:
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Equation (1) captures the research-interest change that resulted 
from a change in topics or from a change in engagement with the 
topics, thereby providing an effective quantification on the extent of 
change. J =  0 indicates that the two topic vectors gi and gf are identi-
cal, capturing the fact that the author not only studied the same set 
of topics at the two stages of the career, but also was involved in each 
of these topics with the same weight. J =  1 corresponds to a com-
plete change in interests, in which a researcher does not engage in 
any initial topic of interest. We choose m =  8. As a result, our analy-
ses are based on 14,715 scientists, each of which was an author on at 
least 2m =  16 papers included in our dataset. We also report analy-
ses based on other m values (m =  6 and m =  10, Supplementary 
Note 2) and find that our results are insensitive to the choice of m. 
To take other factors into account that can play a role in quantifying 
research-interest change, we further perform three additional mea-
surements. First, to avoid the gaps between the two sets of papers, 
we take 2m consecutive papers starting at a randomly chosen paper 
and measure the interest change based on the two adjacent m paper 
sequences (Supplementary Note 3). Second, to eliminate the effects 
of different publication rates, we measure the interest change J within 
scientists who publish at similar rates (Supplementary Note 4).  
Finally, as research interest is associated with time, we measure 
interest change based on two sets of papers published over the same 
time period at the early and late stage of a career (Supplementary 
Note 5). We obtain similar observations in all three measurements, 
demonstrating that the discovered patterns in research-interest evo-
lution do not rely on a specific metric.

The quantification of research-interest change allows us to 
measure its distribution within the population. We find that the 
fraction of scientists P decays with the extent of interest change 
J (Fig. 2a), which can be well fitted with an exponential function 
(see Supplementary Note 6 for fitting statistics). This exponen-
tial decay indicates that most scientists are characterized by little 
change in their research interests and the probability of making a 
leap decreases exponentially with its range. At the same time, the 
fact that the histogram P(J) is positive in the full range of domain 
[0, 1] indicates that large changes in a career, such as switching to 

completely different areas, do occur, albeit very rarely. These obser-
vations raise an interesting question: What forms of interest-change 
distribution should we expect? To answer this question, we identify 
three features, that is, heterogeneity, recency and subject proxim-
ity, that characterize research-interest evolution. To illustrate how 
these features shape the distribution of interest change, we perform 
three ‘experiments’ in which the interest-change distribution is re-
measured using modified publication sequences of individual sci-
entists. These results further demonstrate the non-trivial nature of 
the exponential distribution observed.

The frequencies of topic tuple occurrences in the publication 
sequence of a scientist follow a power-law distribution (Fig.  2b), 
demonstrating the heterogeneity in individual’s engagement in dif-
ferent subjects. Indeed, a scientist’s research agenda contains core 
research subjects that are repeatedly investigated coupled with 
other more peripheral ones that may only be touched upon occa-
sionally. To examine the effect of heterogeneity on the change in 
research interests, we modify each publication sequence by retain-
ing only the first occurrence of each topic tuple and removing the 
subsequent ones (see Supplementary Fig. 1a for the illustration of 
this procedure and Supplementary Note 7 for more details). The 
interest-change distribution measured over the modified sequences 
reaches a peak at an intermediate value followed by a gradual 
decay (Fig. 2c), which is in contrast to the monotonic, exponential 
decrease that was observed in the real data.

By denoting the number of papers between two consecutive uses 
of a topic tuple as Δ n (see Methods), we compare the distribution 
P(Δ n) to the reshuffled publication sequence Po(Δ n). We find that 
the ratio P(Δ n)/Po(Δ n) decreases with Δ n, going from above to 
below 1 (Fig. 2d). This implies that scientists are more likely to pub-
lish on subjects recently studied in real sequences than in reshuffled 
sequences. To further explore this feature, we measure the relation-
ship between the probability that a distinct topic tuple is re-studied 
(Π) and the order of the first occurrence of this topic tuple in a sci-
entist’s publication sequence (see Methods). As shown in Figure 2e, 
the relationship obtained demonstrates that scientists are more 
likely to publish on subjects studied recently than on those inves-
tigated a long time ago. This recency feature suggests that scientists 
tend to avoid going back to the original research subjects once they 
have moved on to other ones, which consequently drives them to 
explore new research subjects. This is affirmed in our analysis of 
the interest-change distribution measured over the reshuffled pub-
lication sequences (see Supplementary Fig. 1b for the illustration of 
this procedure). The obtained distribution remains exponential, but 
with a much steeper decrease than the original distribution, which 
makes the large extent of interest change significantly less frequent 
than what is actually observed (Fig. 2f).

Knowledge is characterized by underlying topical geometry that 
imposes varying inherent distances between pairs of research sub-
jects26,49,50. When a scientist changes the research subject, he or she 
is more likely to choose a subject that is related to the current one 
than to move to a totally new field, implying the subject proximity 
of research-interest change. To verify this insight, we modify each 
publication sequence by replacing distinct topic tuples in publica-
tions of a scientist with topic tuples that were randomly drawn (see 
Supplementary Fig. 1c for the illustration of this procedure). The 
resulting interest-change distribution shows that most scientists 
have a large extent of change (Fig. 2g), demonstrating the effect of 
subject proximity on research-interest evolution.

These three features reveal insights that are offered by the 
observed distribution of research-interest change. Both heteroge-
neity and subject proximity arise from exploitation of the current 
field, which help stabilize the research interest. Lacking either of the 
two, P would have been characterized by a distribution with a larger 
mean. Yet, the recency feature resulting from the exploration of new 
areas destabilizes research interest. If it were not for the exploitation,  
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Figure 1 | An example demonstrating the procedure to compose a topic 
tuple and topic vector. Using two topic vectors gi and gf based on the first 
and last m papers (m =  2 in this case) in an author’s publication sequence, 
the interest change J is calculated as the complementary cosine similarity 
between the two vectors. See Methods for more details on how to  
calculate topic vectors.
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the interest change would have been much more limited given the 
heterogeneity and subject-proximity features. Together they provide 
us with an empirical basis to build a statistical model for individual 
careers with varying research subjects over time.

Here we consider scientific research as a random walk, following 
Isaac Newton’s retrospection that during his scientific career he was 
like “... a boy playing on the seashore... finding... a prettier shell than 
ordinary”51. Such a ‘seashore’ is represented by a one-dimensional  
lattice in our model and a ‘shell’ corresponds to a scientific finding 
that yields a paper (Fig. 3a). The locations at which shells can be found 

are located with a certain probability p at the sites of lattice, where 
each location contains q shells of one type. q follows a distribution 
P(q) ~ q−α, which is motivated by the heterogeneity in the potential 
that a research yields papers: although some are fruitful, many of 
research topics are not. Therefore, the seashore lattice contains sites 
with piles of shells, separated by a random number of empty sites in 
between. A scientist starts at a random initial position and performs 
an unbiased random walk on its own lattice (50% chance to move 
one step left or right). Upon reaching a site that contains shells,  
the walker picks one shell, corresponding to publishing one paper. 
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Figure 2 | Patterns in the research-interest evolution. a, The fraction of scientists P within a given range of interest change (J −  0.025, J +  0.025] decreases 
monotonically with J, which can be fitted well with an exponential function. At the boundary J =  0, the range [0, 0.05] is used, and the same boundary 
condition applies in all the following studies. b, The probability P(k) that a topic tuple is used for k times in an author’s publication sequence follows 
a power-law distribution, documenting the heterogeneity in the usage of topic tuples. c, P(J) over sequences in which ‘heterogeneity’ is eliminated 
by retaining only the first occurrence of each topic tuple in the publication sequence. d, The separation between the usage of the same topic tuple in 
a scientist’s publication sequence, measured by the number of papers Δ n between its two consecutive uses (see Methods). The ratio between the 
distribution of Δ n of real data (P(Δ n)) and that of the reshuffled sequence (Po(Δ n)) implies that an author is more likely to publish on subjects covered 
in recent papers than on those published a long time ago. e, The relationship between the probability of reusing a previously studied topic tuple Π (see 
Methods) and the rank of its first usage (rank 1 is assigned to the first distinct topic tuple used in an individual’s career, and so on). It demonstrates that a 
scientist is more likely to publish on subjects recently studied than on subjects investigated a long time ago. This is, however, opposite to what preferential 
attachment would predict (see Methods). f, P(J) over sequences in which ‘recency’ is eliminated by removing the temporal correlation of topics by random 
shuffling of papers. g, P(J) over sequences in which ‘subject proximity’ is eliminated by replacing the distinct topic tuples in each publication sequence 
with ones randomly drawn from all existing topic tuples. In c, f and g, the P value equals 0 in the two-sample Kolmogorov− Smirnov test, indicating that the 
observed differences are statistically significant.
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The walker stops when it reaches the end of the career, defined 
by the total number of steps S, following a truncated log-normal 
distribution P(S), the choice of which is motivated by the distri-
bution of the observed career lifetime span of the real scientist52,53 
(Supplementary Fig. 2).

Despite its simplicity, the seashore walk predicts the presence 
of both heterogeneity and recency features. If we assume that one 
type of shells corresponds to one research subject, the power-law 
distribution P(q) provides varying limits to the number of papers 
that can be published on different research subjects. The unbiased 
random walker is likely to return to a site repeatedly, which conse-
quently enables it to collect all the shells from the site. Such repeated 
visits and P(q) give rise to the heterogeneity and recency features 
observed empirically (Supplementary Fig. 3a, b).

To further capture the evolution of research interest, we need 
to assign topics to each type of shell. Recent advances in knowl-
edge expansion4,8,29 have provided two specific features governing 
the evolution of a scientist’s research agenda: first, existing topics 
are connected to form a research subject; and second, new top-
ics are occasionally added29. By absorbing these two features into 

the seashore walk, we define how the research subject of a type  
of shell is associated with its location on the lattice and how  
topics evolve on the underlying lattice, leading to the introduction 
of Model I (Fig. 3a).

For Model I we assume that there is a topic pool containing 
3 topics for each site on the lattice. The shells on the site, if there 
are any, are characterized by a random combination of the 3 top-
ics (with repetitions), representing an artificial topic tuple for the 
research subject of the site. The value 3 is based on the observation 
that each paper is characterized on average by 2.89 PACS codes42 
(Supplementary Fig. 4a, b). Furthermore, we assume that one 
topic pool covers L sites on the lattice and two neighboring topic 
pools differ by one topic. Therefore, new topics are encountered as  
the walker moves away from the starting point, which is in line  
with the empirical observation that new topics emerge when 
the number of distinct topic tuples used by a scientist increases 
(Supplementary Fig. 4c).

Model I generates a sequence of shells for each walker travers-
ing its own seashore, and each shell is characterized by an artificial 
topic tuple. By measuring interest change for an ensemble of walk-
ers (see Supplementary Note 8 for the implementation of the simu-
lation), we obtain a P(J) similar to that of real data (Fig. 4a and see 
Supplementary Note 9 for statistical analyses). Despite its simplicity, 
Model I captures the process of research-interest evolution. It also 
leads to an interesting question: to what extent could the framework 
of seashore walk be improved? Note that the generation of topic 
tuples in Model I is based on simple processes, which can limit its 
capability to accurately reproduce the interest-change distribution. 
If this is the case, we would expect a better result if more complexi-
ties are added to ensure that a walker’s topic tuples as well as the 
correlations among these topic tuples are statistically similar to the 
data. To test this hypothesis, we constructed Model II (Fig. 3b).

For Model II we generated a sequence of shells picked by a 
walker and identify the number of distinct shells in the sequence. 
For a walker who has picked x distinct shells, we randomly find a 
scientist from the data who used x different topic tuples in the pub-
lication sequence and randomly map them to the x distinct shells 
(see Supplementary Note 10 for the implementation of simulation).

We apply Model II to the same shell sequences generated in 
Model I and find that the resulting research-interest change distri-
bution matches closer to the empirical observations (Fig.  4b and 
Supplementary Note 9 for statistical analyses). The improved result 
confirms the validity and potential of the seashore walk to capture 
the research-interest evolution. It is noteworthy that the random-
mapping procedure in Model II is used only to avoid introducing 
any sophisticated means to generate topic tuples. It is inherently 
different from duplicating the actual sequence (Supplementary 
Discussion 1). Moreover, despite some assumptions defining the 
seashore walk, such as the assumption that the number of shells at 
a site follows a power-law distribution, the systematic reproduction 
of empirical observations is obtained from the interplay of multiple 
mechanisms. Removing either of these assumptions would invali-
date the model (Supplementary Discussion 2).

Finally, the seashore walk makes two additional predictions 
regarding an individual’s career. First, the individual’s publication 
process is bursty, as the inter-publication time follows a power-
law distribution35,54 (Supplementary Fig. 5a). In the model, a ran-
dom walker’s first passage steps follow a power-law distribution 
asymptotically with exponential cutoff ~S−3/2 (ref. 55), giving rise to 
the ‘burstiness’ of publication time (Fig. 4c). Second, the number  
of papers authored by a scientist follows a power-law distribution 
with an exponential cutoff56,57 (Supplementary Fig. 5b). We obtain 
the same form of distribution from the model (Fig.  4c). This is  
owing to a combination of factors, including the uniform prob-
ability of encountering sites with shells, the property that the 
mean number of sites visited by a random walker scales as ~S−1/2, 
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Figure 3 | An illustration of the ‘seashore walk’. a, The random walker 
traverses a one-dimensional lattice with piles of ‘shells’ located at the  
sites of the lattice. The probability that a site contains any shells is p.  
The number of shells at a non-empty site is characterized by the 
distribution P(q). The walker picks a shell upon reaching a site that 
contains shells, corresponding to publishing a paper. A sequence of shells 
is generated untill the walker stops after exhausting the total number of 
steps S assigned to its career span, which is characterized by a log-normal 
distribution P(S). In Model I, we assign each shell an artificial topic tuple on 
the basis of the location at which the shell is picked. In particular, L sites on 
the lattice share a topic pool with three topics. The two neighboring topic 
pools vary from one to the other by exactly one topic. For example, if one 
topic pool is ‘a, b, c’ then the next pool could be ‘b, c, d’, and so on, where 
the codes ‘a, b, … ’ represent any arbitrary characterizations of different 
topics. The shells at a site are characterized by an artificial topic tuple as  
a set of three topics, each randomly drawn from the topic pool below.  
b, In Model II, distinct shells picked by a walker are assigned to real topic 
tuples used by a random scientist. Seashell images reproduced with 
permission from S-S-S/iStock/Getty Images Plus/Getty.
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and the existence of a fat-tail in the log-normal distribution P(S) 
(Supplementary Discussion 3).

The success of our simple model in capturing patterns observed 
in individual careers raises another question: can other related 
approaches be adopted and applied to the modelling process inves-
tigated here? To this end, we identified two classes of models that 
might be suitable on the basis of existing works in science of sci-
ence and in network science. The first class pertains to models for 
the mobility patterns of an individual32,37 by treating topic tuples  
as locations. In these models, a scientist’s sequence of research 
subjects becomes the sequence of locations visited in an individual 
mobility trajectory (see Methods). Although this approach could 
reproduce the heterogeneity feature based on preferential attach-
ment38, it could not capture the recency feature. Indeed, under the 
preferential attachment mechanism, a positive feedback would 
arise by which the more frequently a research subject was studied, 
the more likely it would be studied again. As a result, an old subject 
would receive more attention than the recent subject. Therefore, 
the probability of reusing a topic tuple (Π) would decrease with 
the rank of first usage of this topic tuple32. This, however, directly  
contradicts the recency feature that was observed in the data 
(Fig.  2e), demonstrating the inherent inability of models that 
are based on preferential attachment to capture research-interest 
change. The second class of models treats the individual interest 
change as a Markov process on the knowledge network4,8,49. This 
approach provides a comprehensive picture of the geometry of the 

knowledge network that gives rise to subject proximity. However, 
the heterogeneity feature leading to the power-law distributed 
topic tuple usage can not be generated by a Markov process with 
fixed transition probabilities. Moreover, the knowledge network 
characterized by the movements of an individual between research 
subjects is not static but dynamic39, which can not be accounted 
for without introducing a much more complicated model. Taken 
together, both approaches exhibit clear limitations in reproducing 
important characteristics of interest evolution that were studied  
in this paper. Our model, on the other hand, overcomes these  
limitations and preserves the patterns observed in the research-
interest evolution.

In summary, by taking advantage of the PACS codes that classify 
general areas of physics into multiple clearly defined sub-areas, we 
quantitatively measure the extent of interest change for over 14,000 
scientists, and show an exponential distribution of interest change 
within the population. We identify three key features in interest evo-
lution that are essential for the presence of the observed distribu-
tion. We further develop a simple statistical model that describes 
scientific research as a random walk and that successfully captures 
empirical observations. Together, our results fill a critical gap in our 
quantitative understanding of science at a large scale by identify-
ing a set of macroscopic patterns, which govern research-interest 
change throughout individual careers. Despite the well-known fact 
that scientists’ choices of research subjects are driven by a myriad of 
factors, our results indicate that research-interest evolution can be 
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p =  0.2, L =  35, P(q)  ~  q−2, and the log-normal distribution P(S) with mean μ =  6, standard deviation σ =  3 and cutoff Smax =  2,000. b, For the same sequence of 
shells in a, Model II produces an interest-change distribution that matches closely with that of real data. c, The distribution of intervals between a scientist’s 
successive publications P(Δ S) is characterized by a power-law distribution with exponential cutoff in our model. d, The number of papers authored by a 
scientist P(n) follows a power-law distribution with exponential cutoff in our model. The survival functions of c and d are plotted in Supplementary Fig. 6.
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captured well by a simple statistical model, uncovering a new degree 
of regularity underlying individual careers.

The methodology introduced here implies that there are some 
limitations and potential for future work. When composing a topic 
vector, we assume papers on which an author’s name appears are 
equally representative of his or her research interests. This assump-
tion is justified by the difference between the interest in the problem 
addressed by this paper and the contribution to the paper or rec-
ognition of each author3,58: every author has to be interested in the 
problem to engage in co-authoring the paper. In the future work, 
it would be of interest to systematically quantify the difference of 
each co-author’s interest in a single paper on which they collabo-
rate. The macroscopic patterns emphasized in this study are not sig-
nificantly affected by potential errors in name disambiguation given 
the large number of scientists analysed (Supplementary Note 1).  
Yet, the accuracy of author name disambiguation needs to be con-
stantly challenged and scrutinized whenever publication data is 
applied. The systematic nature of classification codes and their rich, 
hierarchical structures make them good approximations of topics in 
research ranging from scientific discoveries30,44–48 to inventions28,59. 
But we need to understand the degree to which classification codes 
are good proxies for research topics better. Our ability to identify 
author names and research topics of papers may improve markedly, 
however, thanks to rapid advances in artificial intelligence and natu-
ral language processing (NLP) that may offer more comprehensive 
publication datasets in the near future.

Promising future directions include extending the simple model 
proposed here to a multidimensional random walk in the knowl-
edge space, which may lead to a model capturing a richer set of 
phenomena that characterize individual careers. Other directions 
include extending this work to other scientific domains to address 
the universality and robustness of our results, investigating how 
the observed patterns depend on contextual information such as 
nations41,60, institutions9,43, scientific disciplines17, the size of the 
research community16,23,61, the status of a scientist3,52,53 and publica-
tion habits. It would also be important to understand the short-term 
benefit and long-term scientific impact6,7,62–65 of research-interest 
change by focusing on citations instead of publications. Answering 
these questions could not only offer a better understanding of the 
fundamental mechanisms that underpin a scientific career, but 
might also substantially improve our ability to trace, assess, predict 
and nurture high-impact scientists.

Methods
Calculating topic vectors. The value of each element in the topic vector represents 
a topic’s normalized frequency of occurrence in the set of papers analysed.  
Given a topic tuple, we can use a vector X =  (a1, a2, … , a67) to express the 
occurrence of each of the 67 topics in the topic tuple, whereby ai =  0 indicates  
that the ith topic is not included in the topic tuple, ai =  1 that the ith topic appears 
once, and so on. = ∑ =N aX i i1

67  is the size of the topic tuple. By normalizing X, we 
obtain a vector Y =  (b1, b2, … , b67) in which bi =  ai/NX is the normalized frequency 
of occurrence of the ith topic. The topic vector g is calculated by averaging m 
different Y vectors drawn from m papers, with = ∑ =g Y m/j

m
j1 . Take the calculation 

of gi in Fig. 1 as an example. The two topic tuples for gi are (68, 89, 89) and  
(02, 05, 68). The element value of topic 68 is calculated as =+1 / 3 1 / 3

2
1
3
 as it  

appears once in each of the topic tuples. The element value of topic 89 is calculated 
as =+2 / 3 0

2
1
3
 as it appears twice in one topic tuple and is not included in the  

other. The elemental values of topic 02 and 05 are calculated as =+1 / 3 0
2

1
6

.

Measuring Δn. Δ n is measured as the separation between the two subsequent 
appearances of the same topic tuple in a scientist’s publication sequence.  
For example, representing distinct topic tuples as different capital letters and 
assuming a publication sequence is ‘A A A B C C B D E’, we obtain the following 
series of measurements: Δ nA =  1 (distance between first and second appearance 
of A), Δ nA =  1 (distance between the second and third appearance of A), Δ nB =  3 
and Δ nC =  1. These values are then used to calculate the distribution P(Δ n).

Measuring Π. Each publication sequence is characterized by two parameters. 
One is the number of papers n (that is, the length of the sequence) and the other 
is the number of distinct topic tuples in the sequence (x). As both parameters 

vary among individuals, we first fix a set of distinct topic tuples to measure their 
re-usage frequency Π. Here we focus on the first 5 distinct topic tuples in the 
sequence ( that is, the maximum rank is 5). Therefore, only those sequences with 
x ≥  5 are considered. We also analyse other cases by filtering x ≥  4 and x ≥  6 and 
similar patterns are observed. For each qualified sequence (x ≥  5), we go through 
it from the beginning until the fifth distinct topic tuple is firstly used. We then 
start to count the instance where one of the five topic tuples is reused. For each 
individual, we obtain a fraction of time each of the five topic tuples is reused.  
This fraction is then averaged over all qualified sequences to generate Π.

Generating the sequence using a preferential-attachment-based model.  
We apply a preferential-attachment-based model to generated topic tuple 
sequences with power-law distributed usage of each topic tuple32,37,38. In the  
model, an individual’s activity is randomly chosen from the two actions.  
One is to explore a new subject and publish a paper with a new topic tuple.  
The other is to return to a previously studied subject and publish a paper with 
a topic tuple that has already been used. The probability to explore is defined as 
ρn−γ in which the term n−γ captures the decreasing trend to explore a new subject 
as the number of papers increases. Consequently the probability of return, that is, 
to reuse an old topic tuple, is 1− ρn−γ. If one returns, the choice of existing topic 
tuples is governed by preferential attachment: the probability pi to use a specific 
topic tuple i is proportional to the tuple i’s current usage, thereforem, = ∑p n n/i i j j 
where ni is the number of times that the tuple i is used. The parameters applied 
are ρ =  0.4 and γ =  0.1. Each individual’s time step is controlled by the number of 
papers published, following the distribution P(n)~n−1.5 with a cutoff nmax =  150. 
These variables make the sequence generated similar to those in real data.  
We generate a total of 20,000 independent sequences, a comparable number  
to the size of the real data. See Supplementary Discussion 4 for more information 
about the preferential-attachment-based model.

Data availability. The Physical Review dataset is available upon request  
from the APS at http://journals.aps.org/datasets. The name disambiguation 
procedure and the associated data are described in refs 6,43.

Code availability. Computational codes for data processing, analysis, and model 
simulation are available upon request.
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