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S1 Data Description

S1.1 Physical Review Corpus

The Physical Review (PR) dataset consists of all papers published by journals within the Physical

Review corpus from 1893 to 2010 (Table S1). The data is available by request through the APS

website. The corpus is comprised of over 450,000 papers with citations. The data is unique

in its longitudinal nature, spanning over 100 years. Therefore, it is ideal for understanding the

long term aspects of citation histories and impact. Yet, it has two major limitations: (1) It is

discipline specific, containing physics papers only. Therefore, the results obtained using this data

need to be checked on data pertaining to other disciplines. (2) The data includes only internal

citations. Hence, the Web of Science citations of each paper are higher than contained in this data.

Such incompleteness introduces a systematic undercount of the impact of interdisciplinary papers.

Hence we systematically validate our results on Web of Science data.

S1.2 Web of Science

To correct for the limitations of the Physical Review corpus and to test the generality of our results,

we also downloaded papers and citations from Web of Science database from Thomson Reuters.

This dataset indexes citations using six major databases with comprehensive coverage. Thus it

automatically solves limitation (2). To address limitation (1), we selected 12 journals based on

their reach and impact (Table S4). They include general audience journals, like Nature, Science,

and Proceedings of the National Academy of Sciences (PNAS); leading journals within a certain

discipline, like Cell, New England Journal of Medicine (NEJM), Physical Review Letters (PRL);

and review journals, like Reviews of Modern Physics (RMP). We downloaded all papers published

by these journals in three different years (1990, 1995, 2000), and all citations collected by each of

these papers until 2011.
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To test the mechanism behind the temporal changes in impact factor of Cell and NEJM, we

also downloaded all papers published by these journals from 1995 to 2005 and their citations. Web

of Science only provides publication year of papers published prior to 1985, not publication date.

This prevents us from accurately (day resolution) estimating the parameters for papers published

before 1985. This limitation is corrected by the excellent longitudinality of the PR corpus.

S1.3 Explosive Growth of Publications

The number of scientific publications grows exponentially, a pattern first pointed out by Price in

1963 [31]. Since then, various groups have shown that this pattern not only holds for the overall

scientific enterprise, but also within each discipline [32, 33, 34]. We show in Fig. S1 the number of

papers published in each year in the PR corpus. The inset of Fig. S1 gives a cumulative view, i.e.,

total number of papers published up to a certain year, on a log-linear scale. Figure S1 is in good

agreement with previous findings [34] that the number of papers published each year increases

exponentially, in analogy to Moore’s law describing the development of technology, indicating

that

N(t) ∼ exp(βt), (S1)

where β = (17year)−1 for PR corpus. Therefore the number of papers increases by 2.73 times after

17 years, or equivalently doubles every 17× ln(2) = 11.8 years.

S2 Minimal Citation Model

S2.1 Model Definition

In the proposed model, the total number of papers N grow exponentially as (S1), and every new

published paper has m citations to existing papers. The citation probability Πi of each old paper i
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follows

Πi(∆ti) ∼ ηict
iP(∆ti), (S2)

where ti is the publication time of paper i; ∆ti ≡ t− ti indicates the time elapsed since its publication;

and P(∆ti) is the temporal relaxation function that measures the probability that a paper gets cited

after time ∆t elapsed since its publication, capturing the survival rate of a paper’s attractiveness

to the research community. The ct
i term in (S2) captures the preferential attachment mechanism.

Accordingly a paper i’s probability to be cited again is proportional to the total number of citations

ci the paper received previously. In Fig. S3 we document the presence of preferential attachment

in our dataset as well. In this context Πi(t) ∼ ct
i corresponds to the scale-free model and Πi(t) ∼ ηict

i

to the fitness model. As we showed before, these models, lacking aging factors, are inconsistent

with the jump-decay patterns observed in citation dynamics (Fig. S16).

The temporal relaxation function P(∆ti) can be measured directly from the real data. Given

that a paper’s citation is driven by three independent forces (S2), that are difficult to separate from

each other, we need to control the influence of these factors, isolating the temporal decay. This

is similar to measuring preferential attachment from empirical data, where one keeps a constant

time window and looks at the growth of degrees as a function of existing degree [3]. To achieve

this we should group papers with the same fitness (η) and cumulative citations (ct), and look at the

time when they are cited again. But we do not know η beforehand. Moreover, each paper is likely

characterized by different µ and σ parameters in (S3). Therefore, by aggregating different papers,

we will measure a superposition of different temporal relaxation functions. We therefore selected

papers published between 1950 and 1960 in the PR corpus with fixed cumulative citations c (i.e.,

controlling for c, publication time and IF), and tracked the moment when their citations changed

from c to c + 1. We then measured ∆t, i.e. time between their publication and when c→ c + 1 took

place.

Figure S4 shows both P(ln∆t | c) and P(∆t | c) for fixed c = 10 and c = 20, finding that the
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relaxation function is best approximated by a lognormal function

P(∆t) =
1

√
2πσ∆t

exp
(
−

(ln∆t−µ)2

2σ2

)
. (S3)

Indeed, a lognormal distribution naturally emerges in multiplicative processes, frequently used to

model the temporal relaxation function in diverse settings, from survival times after cancer diag-

nosis [35] and latency periods of diseases [36] to the duration of marriages [37] and length of both

spoken and written conversations [38, 39]. Theoretically, we obtain a lognormal distribution if the

relaxation time ∆t is a product of independent, identical distributed random variables {xi}, ∆t =
n∏
i

xi

(equivalently, ln∆t =
n∑
i

ln xi converges to a normal distribution due to the central limit theorem).

Such multiplicative processes often result from independent decision processes [40, 41]. Similar

mechanisms are likely at work in the case of citations: a decision to cite a paper involves balancing

many different factors, from appropriateness to novelty, relevance and even citation limits, each

of which may be approximated as an independent event with random probability, resulting in a

random latent waiting time. The final decision to cite requires us to satisfy all these individual con-

ditions, best described by a multiplicative process. This argument offers an intuitive explanation

for the origin of the observed lognormal relaxation time. More models that generate lognormal

relaxation times are reviewed in Ref. [42].

S2.2 Solving the Model

Starting from Eq. (S2), the time evolution of the expected number of citations ct
i satisfies

dct
i

dN
=

Πi∑N
i=1 Πi

. (S4)
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Combining (S2-S4) with Eq. (S1) leading to ∆ti = t− ti = β−1 ln(N/i), we obtain

dci

dN
= m

ciηiPt(β−1 ln(N/i))∑N
i=1 ciηiPt(β−1 ln(N/i))

. (S5)

Assuming ci = m( f (ηi,∆ti)−1), we have

d f (ηi,∆ti)
d∆ti

= β
ηi f (ηi,∆ti)Pt(∆ti)

A
, (S6)

with the initial condition f (ηi,0) = 1, where the normalization constant

A ≡ lim
N→∞

N−1
〈 N∑

i=1

ηiPt(β−1 ln(N/i)) f (ηi,β
−1 ln(N/i))

〉
= lim

N→∞

〈∫ N

1
ηiPt(β−1 ln(N/i)) f (ηi,β

−1 ln(N/i))d(i/N)
〉

= β

∫
dηρ(η)

∫ ∞

0
ηPt(t′) f (η, t′)e−βt′dt′.

(S7)

The solution of Eq. (S6) is

f (ηi,∆ti) = e
β
Aηi

∫ ∆ti
0 Pt(t′)dt′ , (S8)

thus

c∆ti
i = m

(
e
β
Aηi

∫ ∆ti
0 Pt(t′)dt′

−1
)
, (S9)

where the constant A can be calculated from

β

∫
ρ(η)dη

∫ ∞

0
exp

(
−βt +

β

A
η

∫ t

0
Pt(t′)dt′

)
dt = 2. (S10)

Plugging Eq. (S3) into Eq. (S9), we get

ct
i = m

(
e
β
AηiΦ

(
ln t−µi
σi

)
−1

)
, (S11)
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where Φ(x) is the cumulative normal distribution

Φ(x) ≡ (2π)−1/2
∫ x

−∞

e−y2/2dy. (S12)

As β and A are system wide parameters, we use λi ≡ ηiβ/A the relative fitness for each paper i,

arriving at Eq. (3) that describes the citation dynamics of paper i:

ct
i = m

(
e
λiΦ

(
ln t−µi
σi

)
−1

)
. (S13)

Equation (S13) suggests two fundamental impact measures. If we take the limit of t→∞, the

formula predicts the ultimate citation of a paper (c∞i ). When t→∞, Φ→ 1. Therefore we arrive

at a remarkably simple formula,

c∞i = m
(
eλi −1

)
, (S14)

indicating that the ultimate impact of a paper is only determined by the relative fitness.

Equation (S13) also allows us to compute a characteristic time scale of a paper’s impact (impact

time), often chosen as the time required for a paper to reach half of its ultimate citations. Due to the

multiplicative nature of citation model (S13), a natural measure is the time necessary for a paper to

reach a ‘geometric mean’ (
√

mc∞i ) of its final citations. As m can be viewed as some sort of initial

attractiveness, this is equivalent to solving for t in

√
m

(
m + c∞i

)
= m

(
e
λiΦ

(
ln t−µi
σi

)
−1

)
. (S15)

Considering eλiΦ(x)� 1, we can approximate the impact time T ∗i as

T ∗i ≈ exp(µi). (S16)
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S2.3 Maximum Likelihood Estimation of Model Parameters

In order to test how well the model matches empirical data, we need to estimate the best (λi,µi,σi)

parameters for each individual paper i given its citation history. We show in this section that this

can be done by considering a non-homogeneous stochastic process, with the events corresponding

to the arrival of individual citations. Imagine a stochastic process {x(t)} where x(t) represents the

number of events by time t, satisfying

Prob(x(t + h)− x(t) = 1) = λ0(x, t)h +O(h), (S17)

where λ0(x, t) is a time dependent rate parameter. Given an empirically observed set of N events

{ti} within the time period [0,T ], where ti indicates the moment when the paper gets cited the ith

time, the likelihood that a paper’s citation dynamics follows the model can be evaluated by the

log-likelihood function

ln L =

N∑
i=1

ln (λ0(i−1, ti))−
∫ T

0
λ0(x(t), t)dt

=

N∑
i=1

ln (λ0(i−1, ti))−
N∑

i=0

∫ ti+1

ti
λ0(i, t)dt.

(S18)

From Eq. (S6), we have

λ0(x, t) =
λ(x + m)
√

2πσt
exp

(
−

(ln(t)−µ)2

2σ2

)
(S19)

and ∫
λ0(x, t)dt = λ(x + m)Φ

(
ln(t)−µ

σ

)
. (S20)
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Combining Eqs. (S18) and (S20), we find

ln L = N lnλ+

N∑
i=1

ln(i + m−1) +

N∑
i=1

ln (P(ti))−λ
N∑

i=0

(i + m)
[
Φ

(
ln(ti+1− t0)−µ

σ

)
−Φ

(
ln(ti)−µ

σ

)]

= N lnλ+

N∑
i=1

ln(i + m−1) +

N∑
i=1

ln (P(ti))−λ(N + m)Φ
(
ln(T )−µ

σ

)
+λ

N∑
i=1

Φ

(
ln(ti)−µ

σ

)
.

(S21)

After the change of variables l̂ = (ln L)/N and m̂ = m/N, we have

l̂ = lnλ+ 〈ln((i−1)/N + m̂)〉+
〈
ln P(ti) +λΦ

(
ln(ti)−µ

σ

)〉
−λ(1 + m̂)Φ

(
ln(T )−µ

σ

)
. (S22)

As the goal is to maximize ln L, which is the same as maximizing l̂ (S22), we can obtain the set

of parameters that best capture a paper’s citation records (λ∗,µ∗,σ∗),

(λ∗,µ∗,σ∗) = arg maxλ,µ,σl̂(λ,µ,σ), (S23)

or

∂l(λ∗,µ∗,σ∗)
∂λ∗

= 0

∂l(λ∗,µ∗,σ∗)
∂µ∗

= 0

∂l(λ∗,µ∗,σ∗)
∂σ∗

= 0.

(S24)

The first equation in (S24) leads to

λ∗ =

[
(1 + m̂)Φ

(
ln(T )−µ∗

σ∗

)
−

〈
Φ

(
ln(ti)−µ∗

σ∗

)〉]−1

. (S25)
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and the rest two are〈
ln(ti)−µ∗

σ∗
−λ∗PG

(
ln(ti)−µ∗

σ∗

)〉
+λ∗(1 + m̂)PG

(
ln(T )−µ∗

σ∗

)
= 0〈

ln(ti)−µ∗

σ∗

(
ln(ti)−µ∗

σ∗
−λ∗PG

(
ln(ti)−µ∗

σ∗

))〉
+λ∗(1 + m̂)

ln(T )−µ∗

σ∗
PG

(
ln(T )−µ∗

σ∗

)
= 1,

(S26)

where PG(x) ≡ (2π)−1/2e−x2/2 is the standard normal distribution.

By solving Eqs. (S25–S26) numerically, we obtained the parameter set (λ∗,µ∗,σ∗) for each

paper based on its historical citation pattern within the time period [0,T ].

When estimating parameters in this paper, we have set m = 30. Fixing m for all papers makes

it easy to compare the parameters for different papers. If we increase m, λ becomes smaller. Yet

we find the fitting and prediction results in the paper are not affected by the choice of m when its

value is comparable to < c >. The intuition behind this is that m measures the typical number of

references contained in each new paper, serving as a proxy of initial attractiveness of a paper.

Note that the case of papers that do not receive any citations is still covered in a self-consistent

manner by the model. If a paper’s fitness is zero, it will not receive any citations. This is also

mathematically consistent with our parameter estimation framework. Indeed, although in this case

there is no observation of citations in the data, based on the log-likelihood function when estimating

model parameters (Eq. S21), for N→ 0, we obtain λ→ 0. Hence for papers without any citations,

the model predicts that their fitness is zero.

S2.4 Model Validation

S2.4.1 Statistical test of data collapse

While the collapse of rescaled citation dynamics (Fig. 1J) are visually impressive for papers pub-

lished by a wide range of journals, we want to measure more precisely how well the model fits the

data. For this purpose, we used the Kolmogorov-Smirnov (KS) measure to evaluate the maximum
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deviation from the fitted curve to empirical citation data. We computed the KS measure for each

paper shown in Fig. 1J, and plotted the distribution (Fig. S5), finding most papers have a KS value

close to 0.05, with 85% papers less than 0.1.

To see if the null hypothesis can be rejected at level 0.1, we construct the Kolmogorov-Smirnov

test by using the critical values of the Kolmogorov distribution [43]. By measuring
√

nDn, where

Dn is drawn from the distribution in Fig. S5, we find for 97% of the fittings in Fig. 1J the null

hypothesis cannot be rejected.

S2.4.2 Data collapse across different journals

To validate the model we rescaled the citation history of individual papers by the parameters esti-

mated using the procedures described in the preceding section. To demonstrate this process we first

determined (λ,µ,σ) for four papers selected for their widely different citation histories (Fig. S6A),

finding that after rescaling they all collapse into a single curve (Eq. 5) (Fig. S6B). The reason is

explained in Fig. S7: by varying λ, µ and σ, Eq. (S13) can account for a wide range of empirically

observed citation histories, from jump-decay patterns to delayed impact.

We show in the main text (Fig. 1F) that the model works well for papers published in PR and

Science. Here we test the data collapse for papers published in several other journals (Fig. S8),

finding that the model performs consistently well across different disciplines.

S2.4.3 Comparing model simulation with real citation histories

Using the appropriate (λi,µi,σi) for each paper, the model is expected to generate a citation history

that resemble the real citation of Fig. 1D. We show in Fig. S9 an example of randomly selected

papers published between 1960 and 1970, finding excellent agreement between the model and

empirical data.
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S2.5 Parameter distributions

S2.5.1 Empirical observations

The model indicates that the differences in the citation history of individual papers are encoded in

the (λ, µ, σ) parameters, allowing us to separate the factors that influence scientific impact. This

is best illustrated by comparing the density functions P(λ), P(µ) and P(σ) for papers published in

different journals in the same year (1990) (Fig. S10), indicating striking fitness differences among

the journals. For example P(λ) for PRB is peaked at λ ≈ 0.5 and is characterized by a relative

paucity of high fitness publications. In contrast most Cell papers have high fitness, in the vicinity

of 2 and 3.

We also find a modest temporal shift in fitness distributions (Fig. S11a). The observed P(µ)

and P(σ) distributions show a remarkable stability in time, across decades (Fig. S11bc). Hence in

most cases the immediacy (µ) and the decay (σ) remain unchanged over decades for some journals

(but in some periods they can undergo major changes, as we document for Cell). We also detect a

weak linear correlation between λi and σi (Fig. S11d), indicating that papers with high fitness are

more likely to have a slower decay, enhancing their long-term impact. Fitness λ and immediacy

µi are independent for most but the high λ papers (Fig. S11e), suggesting that it takes more than

20 years (µ > 9) for truly influential papers (high λ) to reach their citation peak. This explains the

lack of correlation between a paper’s early (c2) and long-term (c30) citations for exceptionally high

impact papers (Fig. 1C).

S2.5.2 Relation with prior work

Some of the goals in our paper are shared with previous works, like Stringer et al [15]. Indeed,

it also identifies the need to estimate the long-term impact of recently published papers, and the

limitations of Impact Factor. Yet, we take a radically different path in addressing these issues.

Indeed, the Stringer model has three components:
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1. Let q be a quality parameter assigned to each paper.

2. Let us assume that the quality follows normal distribution, i.e. P(q) is Gaussian.

3. Finally it introduces the hypothesis that the total number of citations obtained by a paper, c,

are related to the quality q via the relation lnc = q.

Given (2) and (3), it immediately follows that the citation distribution P(c) has a lognormal shape.

Hence, the Stringer model is a static hypothesis based model, designed to predict the citation

distribution of a body of publications. In contrast, Model (Eq. 3) is a mechanistic dynamical

model that is built to predict the citation history of individual papers. This different mathematical

construction deeply affects their predictive power as well.

Stringer et al [15] reported that ultimate citations follow lognormal distributions, bearing high-

level similarities with our lognormal aging function, raising an important question: could it be that

our lognormal temporal decay is anticipated in the lognormal citation distributions proposed by

Stringer et al? As we demonstrate next, the lognormal citation distribution of Stringer is neither a

necessary nor a sufficient condition for lognormal temporal decay:

1. The lognormal in [15] is rooted in the assumption that the quality parameters follow a Gaus-

sian distribution. As long as the quality parameters are normally distributed, the citations

follow lognormal distribution independent of the form of ageing function. To show this,

we remove our lognormal ageing function and replace it with an exponential form (standard

form in Poisson processes). We show in Fig. S12A that citations continue to follow lognor-

mal distributions. This rejects the hypothesis that the aging function is rooted in the citation

distribution.

2. Should the quality parameters follow a distribution different from the normal, the resulting

citation distribution is predicted to be different from lognormal, even if the temporal decay

follows a lognormal. As an example consider the case when the fitness distribution P(λ)
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follows an exponential distribution. Assuming a lognormal temporal decay, it predicts that

the citations instead follow a power law distribution (Fig. S12B).

S2.6 Predicting Citations

Our ability to accurately capture the mechanisms driving a paper’s citation history raises a tanta-

lizing question: can the proposed model predict the future citations of a publication? In principle,

we can use a paper’s citation history up to year Tt after publication (training period Tt) to estimate

the λi, µi, σi parameters associated with the paper and then use Eq. 3 to predict the paper’s future

citations. This process can be formalized as the following. Using the training period Tt and kt sam-

pling citations, we try to predict the number of citations at a future time Tp. Equation 3 predicts

the expected increment of citations between the period (Tt,Tp]

∆k = (kt + m)
(
eη(Φ((lnTp−µ)/σ)−Φ((lnTt−µ)/σ))−1

)
. (S27)

Hence, the expected citation at time Tp is

k(η,µ,σ) = (kt + m)eη(Φ((lnTp−µ)/σ)−Φ((lnTt−µ)/σ))−m (S28)

where, by assuming uniform prior distributions of (η,µ,σ), the probability of taking parameters

(η,µ,σ) follows,

P(η,µ,σ) ∝ L = eln L(η,µ,σ), (S29)

where the likelihood function L satisfies Eq. (S21).

Therefore, given a citation history, we can use the model to predict the probability for the paper

to have kp citations at the time Tp,

P(kp) =

∫
δ
(
k(η,µ,σ)− kp

)
P(η,µ,σ)dηdµdσ. (S30)
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Here we neglect the fluctuation from the stochastic process itself, and consider only the uncertain-

ties in parameter estimation.

To give an intuition about (S30), we show P(kp) for a randomly selected paper for different

Tp (Fig. S13), illustrating the narrowly peaked nature of P(kp). Hence, the most probable future

citation k∗p can be obtained from
dP(kp)

dkp

∣∣∣∣∣∣
kp=k∗p

= 0, (S31)

and the upper/lower uncertainty can be obtained from the variance of P(kp):

σ+
p =

√∫ ∞

k∗p
(kp− k∗p)2P(kp)dkp (S32a)

σ−p =

√∫ k∗p

kt

(kp− k∗p)2P(kp)dkp (S32b)

Taken together, based on an existing citation history and by combining Equations (S31) and

(S32), the model predicts at each future time Tp, the most likely citations at the time (k∗p) as well

as the confidence range [−σ−p ,σ
+
p], represented as a citation envelope (Fig. S14). To systematically

evaluate the fraction of papers that fall within the predicted citation envelope, we measure zT =

|cT − k∗p|/σ
+
p , that quantifies how many standard deviations away the real citations deviate from

predicted most likely citations. zT ≤ 1 indicates that the real citation dynamics fall within the

citation envelope. If, however, zT > 2, it indicates that the predicted citations exit the envelope

far enough that the citations are not predicted correctly by the model. To this end, we compiled

a test base of papers, consisting of all papers in the PR corpus published within the same decade

(1960s) that have at least 10 citations in 5 years (4492 papers). As shown in Fig. 4C, P(z30) decays

fast with z30, indicating it is rather rare to have a paper exiting the citation envelope. Indeed, only

about 6.5% papers are not captured by the model (z > 2). Interestingly, this fraction is hardly

affected by the length of training and testing period, demonstrating the remarkable robustness in

the model’s ability to capture citation dynamics despite its minimalist nature. In comparison, this
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fraction (P(z ≤ 2)) is around 50% for other competing models (See Sec. S3.2 for details).

S3 Potential Models for Citation Dynamics

The observed accuracy of the proposed model prompts us to ask whether the model is unique in

its ability to capture future citation histories. We therefore seek models that can account for the

observed diversity in citation dynamics, fit citation histories, and predict future citations. While

most models are not specifically designed to capture the citation dynamics of individual papers,

we examine in this section some of the most relevant models and discuss their strengths and lim-

itations. Two lines of inquiry are relevant in this context: network growth models from statistical

physics built to capture citation networks, and models pertaining to diffusion of innovations in

social/ecomonic sciences.

S3.1 Network Growth Models

S3.1.1 Scale-Free Model

The scale-free model [20] (also known as Barabási-Albert (BA) model) is designed to reproduce

the degree distribution of complex networks. Note that variants of the model were proposed by

Price [2] and Simon [44]. At each step an old paper i acquires citations from a new paper with

probability proportional to its current citations Πi ∝ ct
i, a mechanism known as preferential attach-

ment (PA).

Despite the success of the scale-free model in predicting fat-tailed citation distribution, it has

difficulties capturing the citation dynamics of individual papers. Indeed, for paper i the scale-free

model predicts its citation growth as [20]

ct
i ∼ N

1/2, (S33)
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where ct
i is the cumulative number of citations paper i received, given the N papers in the system.

This indicates that (i) all papers follow the same citation dynamics, in contrast with our observation

(Fig. 1D) that each paper has a different citation history; (ii) it tells us that the citations should grow

indefinitely at N1/2. If we incorporate in the model the fact that we have an exponential growth in

the number of papers (see Eq. (S1)), we find that

ct
i ∼ exp(0.5βt), (S34)

indicating that the paper citations should increase exponentially over time (Fig. S15). Yet, the

average number of citations ci(t) of all papers i at time t after publication follows a distinct ‘jump-

decay’ pattern (Fig. S16), indicating that a paper’s main impact comes during the first two years

after publication and diminishes over time [2]. Therefore, both (S33) and (S34) represent drastic

deviations from the empirical observations.

S3.1.2 Fitness Model

In the fitness model [24] (also known as Bianconi-Barabási (BB) model), besides the PA mecha-

nism each paper i has an initial fitness λi capturing its unique likelihood to be cited in the future.

That is,

Πi ∝ λict
i. (S35)

The fitness model predicts

ct
i ∼ N

αi , (S36)

where the exponent αi ∝ λi, i.e. it is proportional to paper i’s fitness. Given exponential growth

of papers (Eq. S1), we find that ct
i again increases exponentially over time, significantly deviating

from the observations (Fig. S16).
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S3.1.3 Relationship between the proposed model and network growth models

While the proposed model is based on the conceptual basis offered by models developed in the

network science literature, like the fitness model [24], the main finding of the model is that the

fitness model is not sufficient to capture the real citation histories. The reason is simple: the fitness

model is a generic conceptual model, lacking the key ingredients of citation histories.

To be specific, the primary purpose of the fitness model is to reproduce the overall structure

of a network under the presence of fitness. In contrast, the proposed model aims at modeling the

citation dynamics of the individual papers. In network science, this would require us to correctly

predict the growth dynamics of each individual node. This is never pursued, as the time evolution

of individual nodes depends on many details that the existing models, like the fitness model simply

ignore, as they do not matter in the t → ∞ asymptotic limit. The main difference between the

fitness model and the proposed model is driven by the goal to accurately predict future citation

patterns. The two models have two common ingredients: preferential attachment (the cT term in

Eq. 2), and the fitness parameter (the ηi term in Eq. 2). The proposed model has two additional

ingredients:

1. The aging function P(t).

2. The exponential growth of the arriving papers.

With these two modifications, we show, for the first time, that the citation history of individual

papers is characterized by a remarkable degree of regularity.

S3.2 Diffusion of Innovations

The theory of diffusion of innovations aims to explain the adoption of new ideas and technologies.

Although its main focus is to determine the success and failure of a product, the models often pre-

dict S-curves that are similar to the one presented in the main text. Next we explore the possibility

of using diffusion S-curves to describe the citation history of individual papers.
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S3.2.1 Logistic Model

The logistic function is widely used to model population growth and product adoptions, with appli-

cations in many fields. In the context of citations one could view a paper as a new product, whose

adoption leads to an increase in citations. Each paper is characterized by a different increase rate

r and a total number of citations c∞i that captures the differences in impact. With time, a paper’s

attractiveness fades, as the development along the ideas offered by the paper have been adopted by

all potential adopters, hence the paper’s citations approach c∞i . In the rate equation formalism this

can be described as
dct

i

dt
= rict

i

(
1−

ct
i

c∞i

)
, (S37)

yielding

ct
i =

c∞i
1 + e−ri(t−τi)

, (S38)

where c∞i , ri and τi correspond to ultimate citation, longevity, and immediacy of paper i.

S3.2.2 Bass Model

One of the most famous models in marketing and management sciences is the Bass model [27],

that describes the process of new product being adopted by mass populations. The Bass model

assumes the adopters of a product are influenced by two aspects: mass media and word of mouth.

Hence the buyers comprise two groups. One group, the innovators as coined by Bass, is influenced

only by the mass media, while the other group, the imitators, is influenced by others (word of

mouth effect). Such assumptions are fairly reasonable in the context of citations. The innovators

correspond to people who cite the paper spontaneously, little influenced by how many people have

already cited the paper. At the same time, a paper’s citations are driven by word-of-mouth diffusion

(the imitators). Mathematically, this can be expressed as

dct
i

dt
= (p + qct

i/c
∞)(c∞− ct

i), (S39)
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where p characterizes “innovators”, reflecting an influence that is independent of current citations

(ct
i), and q reflects the imitation part of the model. Solving (S39) yields

ct
i = c∞

1− e−(p+q)t

1 +
q
pe−(p+q)t

. (S40)

S3.2.3 Gompertz Model

The Gompertz model [28], named after Benjamin Gompertz, was first proposed to model human

mortality. The model generates a skewed diffusion curve with long tails. In this context, early

citations pave the way for new citations and drive the citation dynamics, hence the rate of research

develop increases at an exponential rate. This can be formulated as

dct
i

dt
= qct

i ln(c∞/ct
i), (S41)

yielding,

ct
i = c∞e−e−(a+qt)

. (S42)

In (S42), a sets the displacement in ct
i, while q characterizes the growth rate of citations.

It is worth noting that, while these three models are perhaps the most famous ones, they are far

from complete to cover the list of models in diffusion of innovations. For a more comprehensive

review of this body of literatures, refer to [26].

S3.3 Evaluating Different Models

In this section we evaluate the performance of these three models in describing citation dynamics.

There are two aspects we need to evaluate. One concerns with fitting. That is, how closely each

model matches citation histories. The second one is about the predictive power of these models.

As outlined in Table S2, the three models in S3.2, together with the proposed model, all have 3

parameters each, making it a fair comparison of how well each of the models fit the citation dy-
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namics. Therefore, given a paper’s citation dynamics, we can obtain the three parameters for each

paper for a given model. We implemented two methods to estimate the best parameters for fitting

for each the models. One is by using non-linear least square fitting, and the other one is by using

Maximum Likelihood Estimation. We find these two methods have comparable performance for

these three models, corroborating previous finding that in most cases these two methods perform

equally well in fitting these models [26].

We fitted these three models to our test base of papers (all papers in the PR corpus published

within the same decade (1960s) that have at least 10 citations in 5 years). To quantify how well the

model fits the real data, for each paper i with total cT
i within time period [0,T ] we measured the

weighted KS measure

Di = max
t∈[0,T ]

|ct
i − c̃t

i|√
(1 + ct

i)(c
T
i − ct

i + 1)
, (S43)

where c̃t
i represents the citations computed by the model. A smaller Di implies a better fit. Fig-

ure S17 (same as Fig. 4D) shows the KS distribution P(D) for both the proposed model and the

three competing models, finding the best fit is offered by the proposed model.

To illustrate the fitting results and compare the fit by the four model, we use the four papers

shown in Fig. 1G and obtain the best fit (Fig. S18). We find, despite radical differences in citation

dynamics of these four papers, the proposed model fit all of them consistently well. Logistic

model performs the worst, mainly due to the fact that it predicts a symmetric citation curves (same

growth and decay). While the Gompertz and the Bass models predict asymmetric citation pattern,

they also predict an exponential (Bass) or double-exponential (Gompertz) decay of citations (Table

S2), much faster than observed in real data. As a result, they both over-estimate the citation at small

time scales (growth region), particularly for papers with low immediacy (red curve in Fig. S18).

As Gompertz, Bass, and Logistic models predict citation tails with an exponential or faster decay,

it also affects their predictive power. As a consequence, they tend to predict faster saturation of

citation growth, under-estimating future citations. This is reflected in two points. First, only about
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50% papers have z < 2 (Fig. 4C), indicating a large number of papers exit the predicted citation

envelope by these models. Second, the error bars in Fig. 4E,F are systematically below y = x,

indicating these three models underestimate future citations (the predicted citations are always

smaller than the real citations).

Next we offer more quantitative evidence regarding the predictive power illustrated in Fig. 4EF:

(i) While it is clear that the proposed model’s prediction results in more green bars than the

other models, we need to quantify this difference. For this purpose, we measure (Fig. S19A) the

precise fraction of points that fall within the green bars, i.e., the ones that are predicted correctly

on average in Fig. 4F. If we assume that the green bars correspond to correct predictions, we find

that 99% of the points are correctly predicted by the proposed model, while this fraction is about

12% for the other reference models.

(ii) While the scatter plot of Fig. 4EF indicates that the predictions by the proposed model are

close to the y = x line, it does not capture the magnitude of the deviations between the predicted

and the measured citations. Hence, in addition to the scatter plot, we also computed the error in the

predicted citations as a function of real citations (Fig. S19B). That is, for each group of papers with

comparable real citations we measured the average predicted citations within the group less the real

citations, normalized by the real citations. We find that the proposed model performs consistently

for a wide range of citations, with the error hovering in the vicinity of 0. The errors for the other

models are mostly negative, indicating that they systematically underestimate future citations. The

deviations for those models deteriorate for the highly cited papers.

S3.4 Special case of the proposed model and the role of preferential attach-

ment

Let us now assume that λ is small and let us take the Taylor expansion around λ = 0 for Eq. 3. As

the model predicts ct = m(eλΦ−1), its Taylor expansion can be written as
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ct = m(λΦ+
1
2

Φ2λ2 + ...+
1
n!

Φnλn) (S44)

The first order term is ct = mλΦ, the same as the prediction of the lognormal temporal decay

modulated by a single parameter. That is, if we assume

ci(t) = qi
1

tσi
√

2π
e
−

(ln t−µi)2

2σ2
i , (S45)

which predicts

ct = qiΦ(
ln t−µi

σi
). (S46)

Hence, the first order approximation of the model is equivalent to a model that takes preferential

attachment out of the model but keeps the lognormal temporal decay and one extra parameter for

fitness, prompting us to call this the Lognormal model. Therefore, for papers with small fitness, the

Lognormal model (S46) behaves the same way as the proposed model. Indeed, when papers have

very few citations, the role of preferential attachment can be neglected, and the behavior of the

model is similar to having simply the lognormal temporal decay modulated by a single parameter.

This raises an important question: could our model offer a theoretical bound below which the

effect of preferential attachment can be neglected? Indeed, when the sum of all the neglected higher

order terms in (S44) is not sufficient to increase the total citation by 1, the lognormal model and the

full proposed model with preferential attachment are equivalent. Mathematically this corresponds

to
∞∑

n=2

1
n!

Φnλn < 1. (S47)

Solving this equation yields λ ≈ 0.25, predicting the citation threshold c∞ ≈ 8.5. That is, for papers

that collect ultimately less than 8 citations, their citation dynamics are fundamentally indistin-

guishable from the Lognormal model. Hence our model gives rise to an analytical prediction of

the citation threshold for preferential attachment to be in effect, which is also in good agreement
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with previous empirical findings [29].

To test the prediction that preferential attachment plays an important role only for high fitness

papers, we grouped the papers based on their number of citations after 30 years (c30), and mea-

sured the average number of citations within each group as a function of the time, creal(t|c30). We

obtain the best fit for each paper using our model and Lognormal models, and compute the aver-

age number of citations in each year within groups using the best fitted parameters, cmodel(t|c30).

In Fig. R2 we show the ratio between real citations and those generated by the two models,

creal(t|c30)/cmodel(t|c30). If this value equals one, it indicates that the model predicted citations

closely match the real citations.

As Fig. S20A shows, for our model the curves hover in the vicinity of 1, indicating that the pro-

posed model performs consistently for papers with rather different impact at any time. In contrast,

the Lognormal model shows systematic deviations (Fig. S20B) for papers with intermediate range

of citations (from 40 to 500), for which the curves increase dramatically as time increases, with

values approaching 2 at year 30. To be specific, the lognormal model significantly underestimates

the real citations, thanks to the lack of preferential attachment. For papers with very high citations

(around 1000 in 30 years), the differences become even more pronounced.

In summary, the Lognormal model behaves the same way as our model for papers with few

citations (c < 8), but it fails to characterize the citation patterns of medium to high impact papers.

To be consistent, we repeated the same measurements for other competing models documented

in the paper, finding that our model consistently outperforms these models according to this new

measure as well. It is also worth noting that between Bass and Lognormal, it is hard to say which

one is better based on Fig. S20 only.
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S4 Quantifying Journal Impact

We used the Web of Science dataset to compare papers from different journals, We only consider

the research papers published by each journal, as only their citations are counted in the IF. This

can be achieved by looking at document type for each paper indexed by Web of Science. Most

specifically, we only consider the document types as Review and Article. We find that for some

journals, like for Physical Review Letters (PRL), the vast majority of papers are in these categories.

Yet for other journals, especially the ones for general audience, many are classified as “letter to

editor” or “editorial”. Therefore, in analogy to the citable items used in measuring a journal’s

impact factor (IF) by Journal Citation Reports, this distinction is important to understand a journal’s

impact.

To quantify the impact of a journal, we count the average citations all papers published by the

journal acquire over time,

Ct
j =

1
N j

N j∑
i

ct
i, (S48)

where N j is the total number of papers published by journal j. We find that Ct
j is also well approx-

imated by our model (Fig. S21), indicating that

Ct
j = m

eΛ jΦ

( lnT−M j
Σ j

)
−1

 . (S49)

Therefore each journal’s citations are captured by three parameters (Λ,M,Σ), in analogy with the

(λ,µ,σ) parameters derived for individual papers. To check whether (Λ,M,Σ) represent the average

of individual papers published by the journal, we computed for each journal shown in Fig. S21 the

(λ,µ,σ) parameters for individual papers published in the journal, and the mean of each parameter

with its journal average (Fig. S22). We find that 〈λ〉, 〈µ〉, 〈σ〉 are in good agreement with Λ, M,

and Σ, indicating that (Λ,M,Σ) parameters are representative for an average paper published by the

journal.
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S4.1 Calculating the Impact Factor (IF)

The IF of a journal is defined as the average number of citations received per paper by that journal

during the two preceding years. Let us consider for example calculating a journal’s IF in 1992.

In the numerator we need to measure the number of times papers published by this journal in

1990 and 1991 are cited during 1992. This includes all papers published by this journal. In the

denominator, we need to normalize by the number of papers. But according to the definition

from Journal Citation Reports, this normalization is for the number of “citable items” published

by that journal in 1990 and 1991. In principle, the exact expression of the IF can be obtained

by integrating over all papers published within the two-year time frame using their corresponding

parameters. Assuming the publication date of a paper within a year does not affect its citations,

we can treat all papers within a year as published on the same date. Imagine we want to calculate

a journal’s IF in the year T , and this journal published N1 papers in the year T1 = T − 2 and N2

papers in T2 = T −1. Therefore, based on the definition of IF, we have

IF(T ) =

N1∑
i

ci(T |T1) +
N2∑
i

ci(T |T2)

N1 + N2
, (S50)

where ci(T |T1) and ci(T |T2) are the citations in year T for paper i published in year T1 and T2,

respectively. In Fig. S23ab, we compared the IFs measured by Eq. (S50) to the reported value for

Cell and NEJM (Fig. 3) between 1998-2005, finding a good agreement except for small deviations

for NEJM in 1999 and 2000, which are likely caused by the difference in coverage of journals and

the specific definition of ‘citable items’ by Thomson Reuters.

The proposed model allows us to calculate the journal’s impact factor analytically. To do it, we
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substitute Eqs. (S48) and (S49) into (S50), obtaining

IF(T ) =
N1C(T |T1) + N2C(T |T2)

N1 + N2

=
mN1

N1 + N2

(
e

Λ(T1)Φ
(

M1−M(T1)
Σ(T1)

)
− e

Λ(T1)Φ
(

M3−M(T1)
Σ(T1)

))
+

mN2

N1 + N2

(
e

Λ(T2)Φ
(

M3−M(T2)
Σ(T2)

)
− e

Λ(T2)Φ
(

M2−M(T2)
Σ(T2)

))
,

(S51)

where (Λ(T1),M(T1),Σ(T1)) and (Λ(T2),M(T2),Σ(T2)) are the journal parameters measured at the

year T1 and T2, respectively, and M1 = ln(3 years) = ln(3×365)≈ 7.00, M2 = ln(1 year) = ln(365)≈

5.90 and M3 = ln(2 years) = ln(2×365)≈ 6.59. Figure S23c documents an excellent match between

Eq. (S51) and the empirical measurement based on (S50).

To demonstrate how well our formula of Impact factor (IF) agrees with the empirical results,

we show in Table S3 the results of three measurements (Table S3): IF reported by ISI, IF measured

in our dataset, and IF computed using our formula (S47).

As illustrated in Fig. S24, IF measured in our dataset occasionally differs from the IF reported

by ISI. This is mainly due to the difference in journal coverage and the specific definition of citable

items by Thomson Reuters. Our dataset is restricted to journals carried by Northeastern Uni-

versity’s subscription to ISI, which is a subset of the full range of sources covered by Thomson

Reuters. Furthermore, we used only papers labeled as research articles when computing the IF.

Yet, the difference is typically small relative to the magnitude of the IF. To be specific, it is always

10% or smaller, except for Cell in 2005. Most important, when we compare the IF measured in our

dataset with the IF computed using our framework, we find excellent agreement between the two

quantities across different journals and years, vividly demonstrating the accuracy of our approach.

To further simplify (S51), we assume that the changes in papers published by a journal are

small over the course of two years, in terms of both number of papers published and their citations.

Under this assumption, N1 = N2 and (Λ,M,Σ)≡ (Λ(T1),M(T1),Σ(T1)) = (Λ(T2),M(T2),Σ(T2)), Eq.
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(S51) leads to

IF ≈
m
2

(
exp

[
ΛΦ

(M1−M
Σ

)]
− exp

[
ΛΦ

(M2−M
Σ

)])
. (S52)

This approximation is not able to account for the temporal evolution in IF, but allows us to compute

a journal’s IF using only one year of data. To see how well (S52) approximates the reported IF,

we use the citation data for the journals published in 1990 and approximate their IF in 1992. We

then compare the computed IF by using (S52) with the ones reported by ISI (Fig. S25). We find

that despite its simplicity, the two quantities largely agree with each other for different journals,

indicating that (S52) and thus Eq. (10) serves as a good approximation for a journal’s impact factor.
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Figure S1: The number of papers published each year in the PR corpus. Inset: cumulative number
of papers N(t) published up to year t.
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A B

Figure S2: Impact factor and the number of citations lacks long-term predictability. (A)
Distribution of the cumulative citations ten years after publication (c10) for all papers published
in Cell, PNAS, and Physical Review B (PRB) in 1990. (B) Citation history of all papers shown in
(A) that acquired 50 citations 5 years after publication, illustrating the different long-term impact
despite their equal early impact.
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Figure S3: Empirical validation of preferential attachment. Attachment rate measures the like-
lihood for new papers published in different years (color coded) to cite an old paper with ct cita-
tions. That is, for each year, ct measures the citations of each paper before this year, and attachment
rate measures the average number of times each paper with ct citations was cited in this year. The
linearity of the curves offers evidence for preferential attachment. [3]
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Figure S4: Empirical validation of the lognormal decay (S3) (a) P (ln∆t) when papers change
from 10 citations to 11 citations. The dashed line corresponds to the best gaussian fitting. (b) Same
as (a) but for P(∆t). Dashed line corresponds to the best lognormal fitting (µ = 7.85 and σ = 1.01).
Here ∆t is measured in unit of years. (c) P (ln∆t) when papers change from 20 citations to 21
citations. The dashed line corresponds to the best gaussian fitting. (d) Same as (c) but for P(∆t).
The dashed line corresponds to the best lognormal fitting (µ = 8.29 and σ = 0.93).
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Figure S5: Statistical test of the data collapse. Kolmogorov-Smirnov (KS) measure for papers
shown in Fig. 1J.
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A B

Figure S6: Demonstration of rescaling for four papers. (A) Citation history of four papers
published in PR in 1964, selected for their distinct dynamics, displaying a ‘jump-decay’ pattern
(blue); delayed peak (magenta); attracting a constant number of citation over time (green), or
acquiring an increasing number of citations each year (red). (B) Data collapse for the four papers
in (A) using Eq. (5). Legend: the (λ, µ, σ) parameters used to rescale the citation history of each
paper.
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Figure S7: Changes in the citation history c(t) according to (3) after varying the (λ, µ, σ) parame-
ters, indicating that (S13) can account for a wide range of citation patterns.

41



Nature Science

PNAS JEM

NEURON PRL

Cell

GENEDEV

PRB

Lancet

RMP

NEJM

Figure S8: Data collapse for papers published in several journals. We applied the model to all
papers published by the 12 journals listed in Table S4 in 1990, finding consistently an excellent
agreement between model and empirical citation dynamics for journals across different discipline.
The number of papers in each dataset is summarized in Table S4.
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Figure S9: Simulating individual citation histories. We randomly selected two papers each year
between 1960 to 1970 from the PR corpus. Their citation histories are shown on the top panel.
Color code is the same as Fig. 1D, corresponding to the publication year. We estimated the set of
(λ,µ,σ) parameters for each paper using the methods described in Section S2.3. The bottom panel
shows the citation dynamics predicted by Eq. (S13).
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Figure S10: Parameter distributions for papers published by six journals in 1990. (a) Fitness
distributions are radically different for different journals. (b) Immediacy distributions show modest
differences: Cell has the smallest average µ among the 6 journals, while the average immediacy of
PRB is the largest. (c) Longevity distributions of these journals are characterized by similar mean
values.
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Figure S11: Temporal evolution of the parameter distributions and correlations between
them. (a) Fitness distribution for papers published in different years (1980, 1990, and 2000) within
the PR corpus. (b) Immediacy distributions for papers shown in (a). (c) Same, but for longevity
distributions. (d) We observe a weak linear correlation between λ and σ, indicating higher fitness
papers tend to have larger longevity. (e) λ and µ are largely uncorrelated, except in the large λ
region, indicating that papers with very high fitness are also characterized by a delayed impact.
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Figure S12: Untangling lognormal citation distribution and lognormal temporal decay. (A) To
show the ageing function is not rooted in the citation distribution, we remove replace the lognormal
ageing function with an exponential form, while keeping the fitness distribution unchanged as
normal distribution, the citations still follow lognormal distribution. (B) If we change the fitness
distribution to exponential form, and keep the lognormal ageing function, the citations no longer
follow lognormal, but power law distribution.
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Figure S13: Illustrative example of P(kp) for a randomly selected paper. Different lines correspond
to different testing period (Tp).
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Figure S14: Citation predictions using the proposed model for 6 papers randomly selected form
three different journals (PRL, Cell, and Nature).
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Figure S15: Simulation results for the scale-free model. We simulate a scale-free network with
100,000 nodes. Each node is associated with a time stamp such that the number of nodes in each
unit time grows exponentially, following Eq. (S1). We group together the nodes with the same time
stamps, in analogy to papers published in the same year, and explore how their degrees evolve over
time. Inset: the new links acquired by the selected nodes in each time step shown on a log-linear
scale, demonstrating the exponential nature of the growth curve, as predicted by Eq. (S34).
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Figure S16: Average citations for papers published in same year in the Physical Review (PR)
corpus, demonstrating the typical jump-decay citation pattern of citation histories.
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Model (Eq. 3)

Figure S17: Goodness of fit using weighted Kolmogorov-Smirnov (KS) test.
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Figure S18: Fitting the four papers in Fig. 1G by using (A) Model (Eq. 3), (B) Gompertz, (C)
Bass, and (D) Logistic models.
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Figure S19: Comparison between predicted and real citations. (A) Fraction of points corre-
sponds to the green bars in Fig. 4F. (B) Errors in predicted citations as a function of real citations.
We measure the difference between the predicted citations and the real citations, normalized by the
real citations, for each group of papers with similar real citations.
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Figure S20: Comparing model predictions with real citation dynamics for papers with dif-
ferent c30. We grouped the papers based on their number of citations after 30 years (c30), and
measured the average number of citations within each group as a function of the time, creal(t|c30).
We obtain the best fit for each paper using different models, and compute the average number of
citations in each year within groups using the best fitted parameters, cmodel(t|c30). We show the
ratio between real citations and those generated by models, creal(t|c30)/cmodel(t|c30) in (A—E) for
model Eq. 3, Lognormal, Gompertz, Bass, and Logistic model, respectively.
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Figure S21: Average cumulative citations for different journals. The average number of cita-
tions each journal gets to all of its papers published in 1990. Circles correspond to empirically
measured citations, and solid lines are based on Eq. (S49)
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Figure S22: Comparing journal parameters. The three parameters characterizing a journal’s
citation history can be computed in two ways. One is to average over the parameters of individual
papers (〈λ〉, 〈µ〉, 〈σ〉). The other is to use the average citation curve (Fig. S21) for a journal (Λ, M,
Σ). Here we show an a reasonable agreement between the values offered by these two methods in
(a) fitness (b) immediacy (c) longevity.
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Figure S23: Comparing IF reported by ISI with the (S51) approximation. (a) IF reported by ISI
for Cell and NEJM from 1998 to 2006. (b) IF measured for these two journals within the time span
following the definition of (S50). (c) IF computed by plugging in the corresponding parameters in
(S51).
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Figure S24: Comparison between the IF listed in Table S3. (A) Comparison between the IF
reported by ISI and the IF measured by using our dataset. The differences may be due to the
subscription coverage difference and the varying definition of ‘citable items’. (B) Comparison
between the IF computed using our formula (Eq. S47) and the IF measured by using our dataset.
We find excellent agreement between these two quantities
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Figure S25: Scatter plot for journals shown in Fig. S9, their reported IF in 1992 and their approxi-
mated IF obtained using their parameters in 1990 in (S52).
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Table S1: Statistics of PR Corpus.

Journal Start Year End Year # Papers
Physical Review (Series I) 1893 1912 1,469
Physical Review 1913 1969 47,941
Reviews of Modern Physics 1929 2009 2,926
Physical Review Letters 1958 2009 95,516
Physical Review A 1970 2009 53,655
Physical Review B 1970 2009 137,999
Physical Review C 1970 2009 29,935
Physical Review D 1970 2009 56,616
Physical Review E 1993 2009 35,944
Physical Review Special Topics - Accelerators and Beams 2002 2009 1,257
Physical Review Special Topics - Physics Education Research 2005 2009 90
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Table S2: Modeling citation dynamics. We identified three models that can be or have been used
to fit citation histories. The table shows the corresponding rate equation and its analytical solution.

Model Name Rate Equation Solution

Minimal Citation Model, Eq. (S13)
dct

i
dt ≈ ct

iηiP(t) ct
i = m

(
eλiΦ( ln t−µi

σi
)
−1

)
Logistic [26]

dct
i

dt = rict
i

(
1− ct

i/c
∞
)

ct
i = c∞

1+e−ri(t−τi)

Bass [27]
dct

i
dt = (p + qct

i/c
∞)(c∞− ct

i) ct
i = c∞ 1−e−(p+q)t

1+
q
p e−(p+q)t

Gompertz [28, 26]
dct

i
dt = qct

i ln(c∞/ct
i) ct

i = c∞e−e−(a+qt)
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Table S3: Comparison of Impact Factors (IF) for Cell and NEJM from 1998 to 2006. The
last three columns from left to right are: IF reported by ISI, IF measured in our dataset, and IF
computed using our formula (S47)

Journal YEAR REPORTED MEASURED FORMULA
NEJM 1998 28.66 27.9478 27.54758
NEJM 1999 28.857 31.578 30.48742
NEJM 2000 29.512 31.5043 30.23374
NEJM 2001 29.65 28.6434 28.27551
NEJM 2002 31.736 32.971 32.10337
NEJM 2003 34.833 36.1324 35.12369
NEJM 2004 38.57 37.7287 37.04507
NEJM 2005 44.016 41.509 40.75732
NEJM 2006 51.296 48.424 46.90004
CELL 1998 40.997 40.8498 40.00453
CELL 1999 37.297 37.5698 37.10045
CELL 2000 38.686 33.5433 32.70972
CELL 2001 36.242 30.8712 30.30176
CELL 2002 32.44 28.4807 28.1381
CELL 2003 29.219 27.5625 26.62391
CELL 2004 27.254 28.6371 27.91594
CELL 2005 26.626 31.6619 30.81807
CELL 2006 28.389 30.5479 29.94492
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Table S4: Citation statistics for 11 non-review journals and one review journal in 1990. In line
with citation items in definition of IF, we only include here reviews and articles. For 11 non-review
journals, highest Λ, M and Σ are in bold faces. C∞ is obtained by C∞ = m

(
eΛ−1

)
.

Journal Year # Papers Λ M Σ C∞

Cell 1990 485 2.55 6.99 1.23 354
NEJM 1990 330 2.54 7.34 1.24 350
Nature 1990 1,099 2.36 7.36 1.24 289
Science 1990 842 2.33 7.32 1.23 280
Neuron 1990 178 1.99 7.22 1.04 189
Lancet 1990 541 1.84 7.61 1.16 159
Gene-Dev 1990 200 1.83 7.17 1.09 157
JEM 1990 313 1.76 7.29 1.07 144
PNAS 1990 2,060 1.73 7.41 1.11 140
PRL 1990 1,633 1.61 7.78 1.37 121
PRB 1990 2,189 1.13 7.93 1.32 63
RMP 1990 18 3.95 8.09 1.62 1535
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