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Modeling and predicting citation dynamics of individual
articles is important due to its critical role in a wide
range of decisions in science. While the current model-
ing framework successfully captures citation dynamics
of typical articles, there exists a nonnegligible, and
perhaps most interesting, fraction of atypical articles
whose citation trajectories do not follow the normal
rise-and-fall pattern. Here we systematically study and
classify citation patterns of atypical articles, finding that
they can be characterized by awakened articles, second-
acts, and a combination of both. We propose a second-
act model that can accurately describe the citation
dynamics of second-act articles. The model not only
provides a mechanistic framework to understand cita-
tion patterns of atypical articles, separating factors
that drive impact, but it also offers new capabilities to
identify the time of exogenous events that influence
citations.

Introduction

An improved ability to assess and foresee scientific

impact of individual articles has important scientific and pol-

icy implications. As the most common proxy for impact,

citations of an article have widely served as criteria in

important decisions such as faculty hiring and promotions

(Bornmann & Daniel, 2006), or grant awarding and budget

appropriation to science policies (Li & Agha, 2015). They

are also extensively used in the evaluation of faculty compe-

tence (Hirsch, 2005), impact of journals (Garfield, 2006),

research performance of institutes (Kinney, 2007; Liu &

Cheng, 2005), or nations (Moed, 2002). Thanks to the recent

expanding available large-scale data sets that capture in

great detail various activities in science, there is growing

interest from multiple disciplines in quantitative understand-

ing of science (Evans & Rzhetsky, 2010; Evans, 2008;

Evans & Foster, 2011; Fortunato, et al., 2018; Sinatra, Dev-

ille, Szell, Wang, & Barab�asi, 2015). While there is increas-

ing evidence showing that citations correlate well with

perceived scientific impact (Ioannidis, 2014; Radicchi,

Weissman, & Bollen, 2017), it is important to keep in mind

that citations are merely a proxy for impact or quality

(Hirsch, 2005; Moreira, Zeng, & Amaral, 2015). Citations of

articles have been demonstrated to follow highly reproducible

patterns (Gl€anzel & Sch€opflin, 1994; Wang, Song, & Bar-

ab�asi, 2013). The citation model proposed by Wang et al.

(2013, hereafter the WSB model), predicts that citations fol-

low an endogenous process, characterized by a single citation

peak, controlled by three parameters.

Yet while the WSB model and its derivatives (Shen,

Wang, Song, & Barab�asi, 2014) successfully capture the

citation dynamics of typical articles, there exists a nonnegli-

gible, yet previously unknown, and perhaps most interesting,

fraction of articles whose citations do not seem to follow

typical rise-and-fall trajectories, suggesting that these

articles, including many important works in history, may not
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be recognized by the community in the same way as typical

ones (Raan, 2004; Garfield, 1989; Redner, 2005; Ke, Fer-

rara, Radicchi, & Flammini, 2015). For simplicity, we call

them atypical articles hereafter, referring to their atypical

citation distributions.

The dynamic patterns underlying citation dynamics of

atypical articles remain largely unknown, mainly because of

difficulties in identifying atypical articles that could serve as

input for systematic studies. This situation has changed,

however, thanks to a recent study of awakened articles in

science (Ke et al., 2015). Indeed, Ke et al. proposed an ele-

gant, parameter-free methodology to calculate the beauty

coefficient (B coefficient) based on citation patterns that can

systematically characterize and identify awakened articles.

With unusual citation distribution, awakened articles were

assumed to fall out of existing modeling frameworks (Ke

et al., 2015), a hypotheses that has not been tested directly.

Other atypical articles, called “second-act” articles, which

receive a second citation burst, have been also reported

(Wang et al., 2013; Redner, 2005; Li, 2014), and their cita-

tion dynamics do not fit well with current frameworks either.

It is unexplored whether these atypical citation patterns are

driven by completely unknown mechanisms, or can be

reproduced by improving existing models for typical

articles. Note that “sleeping beauty” and “prince” have deep

roots in the literature (Braun, Gl€anzel, & Schubert, 2010; J.

Li & Fred, 2016; van Raan, 2004). In this article, at the

request by the editors, we use awakened articles to denote

sleeping beauty, and wakers for prince. The goal here is not

to introduce new terminologies to an existing scientific con-

sensus, but to fully respect the editorial guidelines on gender

sensitivity in writing (Sugimoto & Mostafa, 2018).

In this article, we aim to fill in the gap between atypical

articles and current citation models. Combining detected

awakened articles and ones that cannot be fitted well with

the WSB model, we gain access to a unique corpus of atypi-

cal articles for measuring and modeling their atypical cita-

tion dynamics. We first test to what degree awakened

articles can be reproduced by typical citation models, such

as the WSB model. An analytical connection between B
coefficient and citation model is also discussed. For second-

act articles (which partially overlap with awakened articles),

we propose a second-act citation model, which substantially

improves our ability to describe citation dynamics in

second-act articles. Results suggest that atypical citation pat-

terns are still largely driven by known mechanisms. We also

find that there may exist two types of second-act, possibly

due to different awakening mechanisms, suggesting the pos-

sibility of applying our framework to estimate awakening

time and locate waker articles.

Related Work

There is a vast literature on citations that are related to

our work. Here we classify them broadly into two categories

(Modeling citations and Atypical articles) and discuss each

of them below in detail.

Modeling Citations

Many factors affect the citation dynamics of an article,

for example, individual competence (Sinatra, Wang, Deville,

Song, & Barab�asi, 2016) and reputation (Petersen et al.,

2014), nationality (Wardle, 1995), teamwork (Wuchty,

Jones, & Uzzi, 2007; Jones, Wuchty, & Uzzi, 2008), topic

(Jia, Wang, & Szymanski, 2017), year (Stringer, Sales-

Pardo, & Amaral, 2010), fields (Garfield, 1979), and multi-

disciplinarity (Fay, Borrill, Amir, Haward, & West, 2006).

Yet three main mechanisms have been identified in citation

accumulation of an article in citation network: preferential

attachment, aging, and fitness.

The concept of preferential attachment—“the rich get

richer”—was first proposed by de Solla Price (1976) and

referred to as “cumulative advantage,” and later popularized

by Barabasi and Albert in network contexts (1999) to

explain power-law distributions found in real networks. It

captures the process in which new citations are more likely

to attach to heavily cited articles than their less-cited coun-

terparts. Preferential attachment was validated in citation

networks (Redner, 2005; Newman, 2009; Barab�asi et al.,

2002) with a linear attachment rate, and its origin was

explained by copying citation models (Krapivsky & Redner,

2001; Gabel & Redner, 2013; Oliveira & Spencer, 2005).

Aging in citations captures the fact that new articles are

more likely to offer fresh ideas, but with time their attrac-

tiveness for new citations is expected to fade away, as their

novelty becomes part of common knowledge. Several func-

tion forms have been proposed to approximate the aging

process in citations, including power-law (Pollman, 2000;

Hajra & Sen, 2005; Wen, Duan, Chen, & Geng, 2011;

Medo, Cimini, & Gualdi, 2011), exponential (Gl€anzel &

Sch€opflin, 1994; Hajra & Sen, 2006; Wang, Yu, & Yu,

2009), log-normal (Wang et al., 2013; Shen et al., 2014;

Yin & Wang, 2017), or simply polynomial (Bouabid, 2011).

Scientific ideas differ inherently in their novelty and

communities, therefore it is impossible to objectively quan-

tify them all. Instead, fitness parameters have been used

mathematically for an article’s ability to attract citations

within a community (that is, in a citation network) and serve

as a collective measure to the intrinsic value (Bianconi &

Barab�asi, 2001; Caldarelli, Capocci, De Los Rios, & Munoz,

2002). Although an article’s value could be reflected in mul-

tiple dimensions (such as the discovery or invention’s com-

mercial value) and go beyond its citation counts (Editorial,

2017; Van Noorden, 2017), the ability to attract citations still

points to the importance of an article.

In this article, we apply a recent citation model (Wang

et al., 2013), which incorporates all of the three mechanisms,

that is, preferential attachment, aging, and fitness.

Atypical Articles

As mentioned earlier, we refer to “atypical articles” as

articles with atypical citation dynamics, unlike the typical

rise-and-fall pattern right after publication. The current lit-

erature has primarily focused on two types of atypical
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articles. The first one is awakened articles, whose scientific

impact receives delayed recognition and only starts to

emerge after a long hibernation period after publications

(Figure 1A,B) (Raan, 2004; Garfield, 1989; Burrell, 2005).

Awakened articles in science could be due to various rea-

sons, such as nonideal technological or social conditions

that forbid immediate follow-up research when the discov-

ery was made (Garfield, 1980; Raan, 2015; Wang, Ma,

Chen, & Rao, 2012), resistance to new findings that contra-

dict traditional wisdom (Cole, 1970), or late recognition

from other fields to their value (Ke et al., 2015). Many defi-

nitions of awakened articles have been proposed; for

instance, by calculating the length of hibernation, the inten-

sity of awakening, and publication date (Raan, 2004; Red-

ner, 2005; Huang, Hsu, & Ciou, 2015). Here we follow the

most recent work by using the B coefficient (Ke et al.,

2015) to detect awakened articles. There are many advan-

tages of this definition, one of which is that it involves no

arbitrary threshold (Li & Fred, 2016), and hence provides a

universal metric to all articles. Researchers have also stud-

ied “waker” articles, which help awakened articles reveal

their true value to scientific communities (Braun, Gl€anzel,

& Schubert, 2010; Li, Yu, Zhang, & Zhang, 2014). How-

ever, current studies have not focused on the mechanistic

modeling framework of awakened articles.

The second type of atypical articles is second-act articles

(Figure 1C) (Redner, 2005). One example is the BCS article

(Bardeen, Cooper, & Schrieffer, 1957), whose citation trajec-

tories experienced a second burst following the discovery of

high-temperature superconductivity. The same phenomenon

is also found in some awakened articles, where these articles

experienced “awakening-sleeping-awakened” cycles (Li &

Ye, 2012; Li, 2014). For these articles, their citation dynam-

ics are characterized by more than one citation peak; hence,

are not captured by existing single-peak citation models.

Research Questions

Previous studies have documented the existence of atypi-

cal articles whose citation histories do not seem to follow

typical rise-and-fall patterns. Yet it remains unclear whether

there is any modeling framework that can reproduce their

citation dynamics. In this article, we build specifically on

two recent advances in science of science—theoretical

modeling of typical articles’ citation dynamics (Wang et al.,

2013; Shen et al., 2014) and empirical identifications of

atypical articles (Ke et al., 2015)—allowing us to shed light

on the following research questions:

• To what extent can citation models of typical citation pat-

terns reproduce atypical citation patterns?
• What are the differences between atypical and typical patterns?
• Can we extend the current modeling framework to reproduce

atypical citation patterns?

Data and Methods

Data

In this study we used both the American Physics Society

(APS) citation data set and the Web of Science (WOS) data

FIG. 1. Examples of atypical articles. In each example, yearly citations data and fitting result of the WSB model are compared. K-S test is used to evalu-

ate the fitting performance. Higher p value suggests better fitting. (A) Example of single-peak awakened article, p 5 .978. (B) Example of second-act

awakened article, p< .001. (C) Example of second-act non-awakened article, p< .001. [Color figure can be viewed at wileyonlinelibrary.com]
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set. The APS data set includes articles published in Physical
Review (1893–1970), Physical Review A/B/C/D (1970–pre-

sent), Physical Review Letters (1958–present), etc. We focus

on articles published in the top three journals in terms

of publication volumes: Physical Review (PR), Physical
Review B (PRB), and Physical Review Letters (PRL). We

include articles with at least 10 citations (Wang et al., 2013;

Shen et al., 2014), resulting in 14,788 articles in PR, 33,203

in PRB, and 40,292 in PRL. The percentages of articles

selected are 37.58%, 29.08%, and 47.65% for PR, PRB, and

PRL respectively. To enrich our available data and address

the limitation that the APS data set contains only articles

and citations in physics, we gather articles (including both

journal articles and conference articles) from the WOS data

set (1900–2015). For our study, we select about 8 million

articles that were published before 2000 (since recent

articles have too short citation histories to show atypical

citation patterns) and have at least 10 citations, which are

32.79% of all articles in the same time.

WSB Citation Model

The citation model we start with is the WSB model pro-

posed by prior work (Wang et al., 2013; Shen et al., 2014).

The model assumes an endogenous process of an article

receiving citations and predicts a single citation peak. Broadly

speaking, the model can be defined as follows,

ci tð Þ5ki ct
i1m

� �
f tjhið Þ; (1)

where ci tð Þ is the citation rate of an article i, that is, the

expected number of new citations that this article receives at

time t. In the model, ki is the article’s fitness; ct
i is the cumu-

lative number of citations the article has received by time t,
assuming a linear rate of preferential attachment in citation

networks; m is the initial attractiveness of articles, that they

may receive some citations regardless of their existing ones;

f tjhið Þ is the aging function that describes the temporal

change of the impact of the article in the scientific commu-

nity, in the following form of log-normal distribution:

fi tjhið Þ5 1ffiffiffiffiffiffi
2p
p

rit
exp 2

1

2

ln t2li

ri

� �2
 !

; t > 0; (2)

where li and ri are parameters for log-normal distribution.

li is the immediacy, controlling the time of maximum in the

aging function, and ri is the longevity, governing the span

of the aging function. Since the integration of the aging

function from zero to infinity is always 1, smaller ri narrows

the nonnegligible part of the distribution to a short time

range and results in a greater value for the maximum point,

while greater ri spreads out the distribution to a long time

range and lowers the maximum point.

Based on Equation (1), suppose we observe ni citations

of article i within time T after its publication, the cumulative

number of citations collected by article i at time t is:

ct
i5 m1nið Þexp ki F tjhið Þ2F Tjhið Þð Þ½ �2m; (3)

where F is the cumulative density function of log-normal

distribution. The parameters ki, li, and ri of article i can be

estimated by maximum likelihood method.

B Coefficient

To identify awakened articles, we employ the B coefficient,

proposed by Ke et al. (2015). Suppose for an article i, in its

yearly citation history, the number of citations in the publica-

tion year is c0;i and the peak yearly citation occurs cm;i at year

tm. A line connecting two points 0; c0;i

� �
and tm;i; cm;i

� �
is lt;i.

The coefficient of the article, Bi, is defined as follows (see

Supporting Figure S1 for illustration):

Bi5
Xtm

t50

lt;i2ct;i

max 1; ct;i

� �; (4)

where ct;i is the number of citations received in year t. Intui-

tively, B increases with the length of hibernation (tm) and the

intensity of awakening (cm), but is penalized by citations

before the citation peak.

Connecting the WSB Model and the B Coefficient

If an awakened article is captured by the WSB model

(for example, the case in Figure 1A, later called a single-

peak awakened article), we can build an analytical connec-

tion between the model and B coefficient. To begin with, we

examine the definition of B in Equation (4). The denomina-

tor penalizes early citations and deals with zero yearly cita-

tions, but it also introduces discontinuity in the definition.

Neglecting the denominator, it is easy to see that the sum of

lt is nearly half of the product of the difference between the

first year citation c0 and peak year citation cm multiplied by

the peak year tm, and the sum of ct is cumulative citations by

year tm. In other words, the B coefficient without the denom-

inator for a given article i is:

Bnd;i5
Xtm

t50

lt;i2ct;i

� �
� 1

2
cm;i2c0;i
� �

tm;i1c0;itm;i2
Xtm
t50

ct;i:

(5)

Our test shows that Bnd and B are highly correlated. For

APS data, for example, the overall rank correlation between

Bnd and B is over 0.8. For the top 1% of awakened articles

identified by B, 80% of them, including nearly all top 0.5%,

can be recovered by the top 1% using Bnd. So we can use

Bnd as our starting point to connect the WSB model and B
coefficient without much loss.

The WSB model uses time intervals between publica-

tion date and forward citation date; therefore, we calculate

yearly citations starting from the date of publication (rather

than using calendar years). Thus c050, and Bnd can be sim-

plified to:
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Bnd;i5
1

2
cm;itm;i2

Xtm
t51

ct;i; (6)

where Bnd has the same intuition as B: it increases with the

duration of hibernation tmð Þ and the intensity of awakening

cmð Þ, but declines with cumulative citations by the citation

peak(
Ptm

t51 ct).

With this simplified form, we can express the B coeffi-

cient Bnd in Equation (6) in terms of parameters in the cita-

tion model, if the model fits the data well. Specifically, we

propose a similar coefficient Bm that is based on model

parameters:

Bm;i5
1

2
ci t0m;i

� �
t0m;i2c

t0m;i
i ; (7)

where ciðt0m;iÞ; t0m;i; c
t0m;i
i are the peak citation rate, the peak

time, and the number of cumulative citations at peak time

for article i, all derived from the citation model. The differ-

ence between Equations (6) and (7) is that (6) is calculated

based on an article’s yearly citation data while (7) is derived

from citation model, using estimated or given parameters.

To compute Bm;i, we first obtain the expression of cita-

tion rate of the WSB model, the first-order derivative of ct
i,

and set to zero to solve for the peaking time t0m;i. After

numerically solving for t0m;i; c
t0m;i
i and ciðt0m;iÞ can be

calculated based on Equation 3 and its first-order derivative,

respectively.

To understand how the model can produce the citation

growth distribution of a single-peak awakened article, we

further investigate the impact of model parameters ki, ri,

and li on its Bm;i. We plot a contour of Bm with respect to l
&r to show variations of Bm to different l2r combinations

(Figure 2A,B). In Figure 2A, we assume that the article has

a relatively large fitness (that is, the article is inherently a

high quality one). For r > 0:6, Bm stays at a relative low

level (less than zero), and its variation is insensitive to l. A

larger r implies a smaller peak in aging function; without a

reasonably sized citation peak, a large Bm can never be

achieved regardless of the time of citation peak. For l < 6,

Bm is also small even with a small r, suggesting that an early

citation peak goes against a large Bm. For l > 6 and

r < 0:6, as B increases, r decreases and l increases; a

smaller r corresponds to a narrow citation span and a higher

citation peak, and a larger l fits a longer delay in citations.

In Figure 2B, we show the variation of Bm given a relatively

small k. Bm tends to be small regardless of l and r, sugges-

ting an awakened article is hardly a low-quality one.

To sum up, parameters of a single-peak awakened article

are likely to be a combination of a high fitness, which

reflects the value of the article, a relative large immediacy

FIG. 2. Analytical and empirical results of single-peak awakened articles. (A,B) Contour of Bm on l2r plane. The color scale corresponds to the

value of Bm. k is constant in each figure. (A) k51:5. Awakened articles (Bm > 45) should have low r and high l. (B) k50:5. Although the same

region as in (A) has the highest Bm, the maximum is much lowered, roughly from 120 to 20. No awakened article is found in this plot. (C–E) Distri-

butions of WSB model parameters of typical articles and single-peak awakened articles in APS and WOS. (C) Distribution of k. Awakened articles

are likely to have higher fitness. (D) Distribution of l. The citations of awakened articles are likely to arrive later. (E) Distribution of r. There’s less

significant difference between awakened articles and typical ones. However, some of awakened articles have higher r due to their long citation spans, and

others have smaller sigma due to very late citations and observed short citation spans. [Color figure can be viewed at wileyonlinelibrary.com]
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parameter l, which is determined by the long hibernation

period, and a small longevity parameter r, which is required

by the short citation span.

Second-Act Citation Model

As shown in Figure 1B,C, the WSB model failed to

explain citation patterns of second-act articles. To capture

this pattern, we propose a novel second-act citation model,

by incorporating a second aging function to account for the

second citation peak, hence enriching existing modeling

frameworks while preserving the three mechanisms driving

citations.

As illustrated in Figure 4A, we modify the aging function

by adding another log-normal distribution,

f 0 tð Þ5f1 tð Þ1rf2 tð Þ5f1 tjl1; r1ð Þ1rf2 tjs; l2; r2ð Þ; (8)

where f1 is the aging function characterizing the first period

of citations, and f2 is the one for citations induced by sec-

ond-act.

More important, we introduce two key parameters, the

delay of second-act, s, and the fitness multiplier for the

second-act (relative to the first act), r. s captures the time

when the second-act takes place, that is, the article starts

to be recognized by the scientific community again. Note

it is possible that the second-act occurs before citations of

the second-act become apparent, since log-normal distri-

bution alone can induce some hibernation period. r cap-

tures the fitness change of the article in the second-act.

Naturally, we assume r is positive: when the second-act

happens, it is usually the case that the article has been

rediscovered by researchers who might find the inherent

value to be different (greater or smaller) than that in the

first act.

More specifically, f2 is a shifted log-normal distribution

to characterize the temporal change of citation rate in the

second-act, which is given as:

f2 tjs; l2;r2ð Þ5

0; t � s

1ffiffiffiffiffiffi
2p
p

r2 t2sð Þ
exp

1

2

ln t2sð Þ2l2

r2

� �2
" #

; t > s

8>><
>>:

(9)

where r2 and l2 are the immediacy of citation peak and the

longevity of citation span of the second-act, respectively, the

same as r1 and l1 in the first act.

Substituting the aging function in the WSB model by

Equation 8, we obtain the number of expected cumulative

citations of a second-act article i at time t,

ct
i5 m1nið Þexp ki F0 tjhið Þ2F0 Tjhið Þð Þ½ �2m; (10)

where F0 tjhið Þ5
Ð t

0
f 0 tð Þdt and hi denotes all parameters in

these two distributions.

Using citation data, we can estimate model parameters of a

second-act article by maximizing the log-likelihood function,

ln L5niln ki1
Xni

k51

ln k1m21ð Þ1
Xni

k51

ln f 0 tkjhið Þð Þ

2ki ni1mð ÞF0 Tjhið Þ1ki

Xni

k51

F0 tkjhið Þ: (11)

Although we classify the second-act articles into second-act

awakened articles and second-act non-awakened articles, the

model is able to reproduce both of them. The difference

between the two groups will be reflected in the distribution

of estimated parameters (see Figure S7).

The MatLab (MathWorks, Natick, MA) codes used to

implement discussed models and estimate parameters of

articles are available on FigShare.1

Results and Discussion

Identified Atypical Articles

After obtaining B of all articles, we take articles within

the top 1% of B in APS data set (B> 45, see Figure S2A;

here we select a lower threshold of B due to smaller size of

this data set), gathering 594, 107, and 211 awakened articles

in PR, PRB, and PRL, respectively. Since PR is the oldest of

these three journals, it is reasonable that it has the most

awakened articles. In the WOS data set, we collect articles

B> 100, resulting in 24,870 awakened articles (about top

0.3%, or 0.1% if articles with less than 10 citations are

included; also see Ke et al., 2015). These articles constitute

the set of awakened articles.

To identify second-act articles, we apply the WSB model

to all articles in both data sets and measure the fitting perfor-

mance of the model using the two-sample Kolmogorov–

Smirnov test (Massey, 1951). For a given article, we com-

pare the expected arrival time of each citation calculated

from the WSB model vs. its actual time in citation history. If

the p-value of test is lower than .1, then the citation history

deviates significantly from the pattern predicted by the

model, and we take it as a second-act candidate. We identify

708 articles from APS (0.8% of data set, Figure S2B),

involving 376, 82, and 250 articles from PR, PRB, and PRL,

respectively. From the WOS data set, we identify 54,388

second-act articles. After examining their citation patterns,

we find they mostly experience two citation peaks, and for

this reason we call this phenomenon the second-act in cita-

tion history.

While the two types of atypical articles, awakened

articles and second-act articles, are largely different from

each other, the boundary that separates them is often blurry.

To systematically identify and categorize atypical articles,

we divide them into four quadrants based on B and p (Figure

3A,B).

Typical articles (B � 45 in APS, B � 100 in WOS, and

p � :1) are located in the second quadrant. The WSB model

can fit them well (mean p-value .907 of APS, .861 in PR,

1https://figshare.com/projects/Modeling_citation_dynamics_of_atypi-

cal_articles/26350

6 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—March 2018

DOI: 10.1002/asi

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—September 2018
DOI: 10.1002/asi

1153



.924 in PRB, and .909 in PRL, .892 in WOS), and they are

not awakened articles.

The first quadrant contains awakened articles. These are

ones that have a large B value (B> 45 in APS and B> 100

in WOS), yet they do not reject the hypothesis that their cita-

tion dynamics deviates significantly from the WSB model

(p � :1). Therefore, they are referred to as single-peak
awakened articles. Figure 1A shows an example of such

articles. Indeed, it received no citation during its early peri-

ods but obtained a large number of citations after nearly 70

years. Although its citation pattern appears different from

typical articles (for which most citations are several years

after publication), we find the WSB model fits appropriately

with the delayed impact pattern, suggesting that this subset

of awakened articles follows the same citation mechanisms

as typical articles.

Articles in the third quadrant (B � 45 in APS, B � 100 in

WOS, and p< .1) are second-act articles but not awakened

ones. For example, the article in Figure 1C received the major-

ity of its citations during the first decade after publication and

collected much less in the second decade. This is most cer-

tainly a typical citation pattern. Then it was actively cited

again for about another 20 years. Its citation rate is not cap-

tured by the WSB model (Figure 1C, blue line), showing large

deviations from the actual citation trajectory (p< .001), thus

we call articles like this second-act non-awakened articles.

Finally, in the fourth quadrant, articles have larger B
(B> 45 in APS, B> 100 in WOS) and p< .1. We call them

second-act awakened articles. Figure 1B shows an example

of such articles. According to the B parameter, this article is

an awakened one. Yet it also has two separated short-term

citation peaks that single-peak citation models failed to cap-

ture (the first one in 5 years after publication and the second

one in 31 years).

Note that the definition of article quadrants is not

unique. The threshold of B or p can be adjusted to

obtain a different classification of articles as long as the

insight of classification remains unchanged. Our goal

here is not to seek an optimal classification, but to use

the article quadrants as a way to understand observed

differences in citation dynamics. Given selected thresh-

olds, we identify 509 single-peak awakened articles, 403

second-act awakened articles, and 305 second-act non-

awakened articles from the APS data set (Figure 3C).

Similarly, we collect 11,078 single-peak awakened

articles, 13,792 second-act awakened articles, and

40,596 second-act non-awakened articles from the WOS

data set (Figure 3D). The numbers show that there is

considerable overlap between awakened articles and

second-act ones, and every type is nontrivial in the data

set. In following sections, we provide empirical analyses

for each type of atypical article.

FIG. 3. (A) Four quadrants of APS articles. The vertical dash line is the threshold of awakened articles (B> 45). The horizontal dash line is the

threshold of second-act articles (p< .1). These two thresholds divide all articles into four quadrants. Percentages of articles in each quadrant are:

98.6% (typical article), 0.58% (single-peak awakened article), 0.35% (second-act non-awakened article), and 0.46% (second-act awakened article). The

data points are randomly drawn from each quadrant. (B) Four quadrants of WOS articles. The threshold of awakened articles is B> 100. The percen-

tages are: 99.2% (typical article), 0.14% (single-peak awakened article), 0.50% (second-act non-awakened article), and 0.17% (second-act awakened

article). (C) The number of atypical articles in each group in APS data set. We identify 509 single-peak awakened articles (343 in PR, 63 in PRB,

and 103 in PRL), 403 second-act awakened articles (125 in PR, 38 in PRB, and 142 in PRL), and 305 second-act non-awakened articles (251 in PR,

44 in PRB, and 108 in PRL). (D) The number of atypical articles in each group in WOS data set. [Color figure can be viewed at wileyonlinelibrary.

com]

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—March 2018

DOI: 10.1002/asi

71154 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—September 2018
DOI: 10.1002/asi



Empirical Analysis of Single-Peak Awakened Articles

We first test the WSB model to all single-peak awakened

articles. The mean p-value of K-S test to them is .523,

which, although lower than the mean p-value of all articles

(around .9), still suggests that these single-peak awakened

articles, while being atypical articles, can be approximated

by the WSB model.

To illustrate the difference between single-peak awak-

ened articles and typical ones, we compare distributions of

their model parameters (Figure 2C–E). Awakened articles

are characterized by higher fitness, corresponding to higher

overall impact than typical articles. The distinct difference

in l also confirms that awakened articles experience longer

hibernation in citations. The difference in r is less signifi-

cant. Some awakened articles have higher r due to their

long citation spans, and others have smaller r due to very

late citations and short citation spans.

Empirical Analysis of Second-Act Articles

Applying the second-act model to second-act articles, we

obtain significant improvement on fitting performance (see

Figure 4B–O for examples).

FIG. 4. (A) Illustration of the second-act model. The blue line represents the period in which the citation rate is dominated by the first-act aging

function f1. The red line represents the period dominated by the second-act aging function f2. s represents the delay of second-act. (B–O) Fitting examples

of second-act articles. (B,C) Fitting example of second-act awakened article. (B: yearly citations, C: cumulative citations. The same layout for other exam-

ples.) p 5 1.000 for K-S test of second-act model fitting. (D,E) Fitting example of second-act awakened article. p 5 .996. (F,G) Fitting example of second-

act awakened article. p 5 .968, from WOS. (H,I) Fitting example of second-act awakened article. p 5 .980. Different from previous examples, this article

has a nearly zero delay and exhibits slow increase of citation rate in the second-act. (J,K) Fitting example of second-act awakened article similar to (H).

p 5 1.000, from WOS. (L,M) Fitting example of second-act non-awakened article. p 5 .894. The second citation peak is much lower than the first one.

(N,O) Fitting example of second-act non-awakened article. p 5 .822, from WOS. [Color figure can be viewed at wileyonlinelibrary.com]
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First, we examine the results in second-act awakened

articles. Table 1 summarizes overall fitting performance.

Although as a simple extension to the single-peak model,

the second-act model significantly improves in its predictive

power. The mean p-value of K-S test increases from .025 to

.898 in the APS data set, the same level when we apply the

WSB model to typical articles. The improvement is similar

for the WOS data set, from .018 to .800. Only 2.2% and

7.8% of second-act awakened articles in APS and WOS

respectively reject the second-act model.

The result of second-act non-awakened articles is also

convincing. As shown in Table 2, the mean of the p-value

increases from .044 to .798 in APS, and from .044 to .752

in WOS, again a significant enhancement over the single-

peak model. Indeed, only 12% and 10.7% of second-act

non-awakened articles in APS and WOS, respectively,

reject the second-act model. Overall, the result suggests

that the majority of second-act articles, regardless being

an awakened one or not, are well captured by the second-

act model.

By the improved fitting performance of the second-act

model, we are able to study second-act articles and find

some interesting facts.

To start with, we examine the second-act awakened arti-

cle illustrated in Figure 1B, noted as article A. The fitting

result with the second-act model is given in Figure 4B,C.

The model is able to capture the change of citation rate in

two periods and gives convincing fitting to actual trajecto-

ries. The estimated delay for the second-act is about 20

years, just before actual citations in the second-act become

noticeable. The relative fitness r is 2.08, reflecting the fact

that the article receives more citations in the second-act.

(See similar example from APS in Figure 4D,E, and exam-

ple from WOS in Figure 4F,G.)

Meanwhile, we find another second-act awakened article

(Figure 4H,I), noted as article B, whose citation dynamic is

different from that of article A. Article B has a significant

portion of citations that are received right after its publica-

tion. If it was not for the peak near the end of data, the arti-

cle would not be considered an awakened article. More

interestingly, for this article the second-act model gives

s50y, even though the second-act only becomes visible

after 40 years. By comparing citation histories, we see that

the citation rate in the second-act of article B rose gradually

over a long time (from 35–55 years), while that of article A

rose quickly (from 28–30 years). The difference suggests a

possibility that the second-act is induced by different sour-

ces. For article A, it may be due to a sudden exogenous fac-

tor outside the article’s topic, but for article B, it could be

more endogenous and lie in the article’s own field, that is,

the value of the article has had different latent within-field

impacts since its publication. (Figure 4J,K provides another

example from WOS as article B.)

Thus, there might be two different types of second-act

awakened articles. One has a long s in the second-act, likely

caused by exogenous shocks. The other has a small s and

the second-act actually starts near t 5 0 but peaks very late,

suggesting a likely endogenous and inherent reason for the

second-act. For the latter, parameters of the second-act aging

function will be similar to ones in single-peak awakened

articles, that is, large l2 and small r2.

To further investigate the above difference within

second-act awakened articles we plot values of B and s
over l22r2 plane using APS results (see Figure 5A) (see

Figure S7 for the result of the WOS data set). We find that

awakened articles can be roughly divided into two kinds:

articles on the left with similar l2&r2 close to typical

articles but with large s, in which the arrival of the

second-act is mainly reflected in the delay (similar to Fig-

ure 4B–G); and articles on the right with small s, in which

case larger l2 and smaller r2 are required to reproduce the

hibernation before the second-act (similar to Figure 4H–

K). To illustrate the role of s, we pick two examples (the

red cross) from each side of Figure 5A. The article shown

in Figure 5B belongs to the first kind, where s is large. As

such, its citation rate increased rapidly at year 39, when it

experienced its second-act. Whereas in Figure 5C, the

citation rate slowly increased from year 40 till 70, our

model suggests its second-act began much earlier. Thus,

consistent with insights from previous discussions, a

second-act awakened article either has a long delay in the

second-act aging function or has a relatively short delay,

but the second-act involves a late and more noticeable

peak.

Interestingly, the distribution of s (Figure S6G) shows

that for second-act articles, no matter awakened article or

TABLE 1. Summary of fitting performance for second-act awakened

articles.

Data set APS WOS

Number of articles 403 13,792

Mean of p-value,

WSB model

.025 .018

Mean of p-value,

second-act model

.898 .800

Ratio of p< .1,

second-act model

2.2% (9 in 403) 7.8% (1,074 in 13,792)

The mean p-values of K-S test to the fitting from both the WSB

model and the second-act model are listed in the table.

TABLE 2. Summary of fitting performance for second-act non-awak-

ened articles.

Data set APS WOS

Number of articles 305 40,596

Mean of p-value,

WSB model

.044 .0437

Mean of p-value,

second-act model

.798 .752

Ratio of p< .1,

second-act model

12.1% (37 in 305) 10.7% (4,351 in 40,596)

The p-values of K-S test to the fitting from both the WSB model

and the second-act model are listed in the table.
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non-awakened ones, about 30% have a second-act with a

delay of less than 1 year after publication. Thus, for all

second-act articles, reasons for the second-act might not be

all exogenous: for some articles, endogenous factors could

give rise to the second-act.

Finally, for second-act non-awakened articles, the exam-

ple in Figure 1C is also reestimated (Figure 4 L,M). The

obtained relative fitness, r, is only 0.13, indicating that the

second-act is much weaker than the first-act, yet the second-

act still deviates the article’s citation trajectory from a typi-

cal single-peak pattern. (See Figure 4N,O for similar exam-

ple from WOS.)

Locating the “Waker”

It is well known that an awakened article is often revived

after a waker article (likely an important one) cites it, bring-

ing a new burst of citations. However, identifying such

wakers is still challenging. Many studies resort to cocitation

networks between wakers and awakened articles (Gorry &

Ragouet, 2016; Li et al., 2014; Braun et al., 2010; Li, 2014;

Ohba & Nakao, 2012; Du & Wu, 2016). This method

requires a thorough analysis of the citation network of the

awakened article and all citing articles and, consequently,

current work focuses only on case studies, not on systematic

methods for a large corpus of awakened articles.

Based on our work, the delay of an awakened article can

pin down the time of waker candidates using only citation

data of the awakened article. This method can be applied to

a large number of awakened articles. If an awakened article

has a noticeable delay, then we can just focus our attention

on citing articles around the delay time.

Here we give two examples where waker articles have

been identified in prior works (Li, 2014; Ohba & Nakao,

2012), and test if our model can find the time of wakers. We

show their citation histories, and plot the fitted citation rate

by the second-act model (Figure 6). The delay of second-

acts in two articles is 26.6 years and 56 years, respectively,

which matches the gaps between awakened articles and

identified wakers, suggesting the potential of our model to

locate wakers.

Due to limited data the model requires, the result of delay

cannot identify an exact waker article when there are multi-

ple candidates. However, it can narrow down the scope of

investigation when the time of second-act is not easy to

determine from yearly citation data.

Conclusion

This article aims to improve our understanding of atypi-

cal citation patterns, by developing mathematical models

that can capture citation dynamics of awakened articles and

FIG. 5. (A) Scatterplot of key second-act model parameters for top 0.2% second-act awakened articles in APS. We select fewer articles to make the

figure clearer while maintaining the message. Higher B corresponds to larger circle and the value of s (in years) is illustrated by the color of circles.

Articles can be roughly divided by the red line. Articles on the left have longer delay, lower immediacy, and higher longevity, contrary to articles on

the right. The two red crosses are selected examples shown in B,C. (B) Example on the left side of (A), in which s539y. After that, its citation rate

increased rapidly. (C) Example on the right side of (A), in which s50y. The citation rate of the second-act only became visible around year 40 and

slowly increased till year 70. [Color figure can be viewed at wileyonlinelibrary.com]
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second-act articles. We first identified awakened articles and

second-act articles from two large-scale corpora by applying

existing methods. We then analyzed their citation patterns,

classifying them into three categories: single-peak awakened

articles, second-act awakened articles, and second-act non-

awakened articles, based on their Bs and p-values in fitting

to citation models of typical articles. The percentages of the

three groups are: 0.58% (single-peak awakened articles),

0.47% (second-act awakened articles), and 0.35% (second-

act non-awakened articles) in APS; 0.14%,0.17%, and

0.50% in WOS (0.21%,0.17%, and 0.13% in APS, and

0.04%, 0.06%, and 0.16% in WOS, if articles less than 10

citations are included).

We find that about half of awakened articles can be

described by typical citation trajectories, suggesting an

endogenous process for these awakened articles to emerge.

We derive the B coefficient analytically in terms of parame-

ters of citation models, offering further insights on the cita-

tion dynamics of this type of awakened articles in

comparison with typical articles.

To understand citation patterns of second-act articles, we

extend the existing single-peak citation model to include a

second peak, allowing us to develop a second-act citation

model. We find the second-act model substantially improves

our ability to characterize atypical citation patterns of both

second-act awakened articles and second-act non-awakened

articles, suggesting that while citation patterns of these

articles appear atypical and citation peaks may come early

or late, they may follow the same mechanisms that drive

citations of typical articles. The second-act model may have

applications in estimating the time of potential waker

articles for second-act awakened articles.

One limitation of our model is that it captures only two

peaks in citation history. In some cases, we observed three

or more citation bursts, which may explain why there are

�10% second-act articles rejecting the second-act model.

Another limitation lies in the identification of second-act

articles. We resort to the WSB model to detect them and

choose the significance level of .1, yet there are some,

albeit much fewer, similar second-act articles when

p 2 ½0:1; 0:3�.
Taken together, we contribute a modeling framework for

the analysis of atypical citation patterns in articles. As more

works now are focused on predictions of future citations,

our results indicate that there are second-act articles whose

future citations may be inherently unpredictable (Garfield,

1980), as their delays in impact can be modeled by exoge-

nous origins. Yet for some second-act articles, our results

offer a possibility of predicting future citations once the

second-act emerges. What remains an open question is to

what degree additional information on authors, topics, or

other metrics in citation networks may shed light on the pre-

dictability of second-acts. Lastly, it is worth noting that,

although this article focuses on citation dynamics in aca-

demic articles, the awakened and second-act phenomena are

also observed in other networked systems such as patent

citation networks and online or social networks (Zhao,

Erdogdu, He, Rajaraman, & Leskovec, 2015; Zhang, Xu, &

Zhao, 2017). Applying and adapting our framework to these

settings outside science could be an interesting future

direction.
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FIG. 6. Examples of locating waker using second-act model. (A) The awakened article (De Rujula, Georgi, & Glashow, 1977) is published in 1977

and the waker (Swanson, 2004), identified by Li (2014), is published in 2004, matching the delay of 26.6 years estimated from our model. (B) The

awakened article (De Rotth, 1940) is published in 1940 and the waker (Tsubota et al., 1996), identified by Ohba and Nakao (2012), is published in

1996, matching the delay of 56 years from our model. [Color figure can be viewed at wileyonlinelibrary.com]
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