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The increasing availability of large-scale data on human behavior has catalyzed simultaneous advances in
network theory, capturing the scaling properties of the interactions between a large number of individuals, and
human dynamics, quantifying the temporal characteristics of human activity patterns. These two areas remain
disjoint, each pursuing as separate lines of inquiry. Here we report a series of generic relationships between
the quantities characterizing these two areas by demonstrating that the degree and link weight distributions in
social networks can be expressed in terms of the dynamical exponents characterizing human activity patterns.
We test the validity of these theoretical predictions on datasets capturing various facets of human interactions,
from mobile calls to tweets.

Fueled by data collected by a wide range of high-
throughput tools and technologies, the study of complex sys-
tems is currently reshaping a number of research fields, from
cell biology to computer science. Nowhere are these advances
more apparent than in the study of human dynamics and so-
cial media. Indeed, the unparalleled use of email, mobile de-
vices and social networking have provided researchers access
to massive amounts of data on the real time activity patterns
of millions of individuals, simultaneously fueling advances in
two research areas, network science [1] and human dynamics
[2]. Network science focuses on the structure and dynamics
of complex networks that capture the totality of interactions
between individuals, having led to the discovery of a series of
generic properties of real networks, from the fat tailed nature
of the degree distribution [3, 4] to predictable patterns char-
acterizing the weights or link strengths [5]. Human dynamics
in contrast focuses on the temporal aspects of individual in-
teraction patterns, offering evidence that the interevent time
between consecutive events initiated by an individual follow
a fat tailed distribution [2, 6], representing a significant devi-
ation from a Poisson process predicted by random communi-
cations. As network theory [1, 3] and human dynamics [2, 6]
have developed in parallel, being pursued as separate lines of
inquiry, we lack relationships between the quantities explored
by them, despite the fact that they often study the same sys-
tems and datasets. In this Letter, we derive a series of scaling
relationships that link the quantities characterizing social net-
works and human dynamics, and demonstrate their generality
across a wide range of systems.

To demonstrate the practical relevance of our results, we
compiled four independent datasets that together capture most
aspects of digital communication that humans are involved in
lately (SM Section 1): 1) Mobile phone data, that summarizes
the communication patterns of about 4 million anonymized
European mobile users during a year period, providing access
to over 1.2 billion events, representing information on who
talks with whom and the timing of each call [7]; 2) E-mail
traffic within a university, that collects over two million email
messages sent during an 83 day period exchanged by around
3,000 users [6, 8]; 3) Twitter data, that records the tweets of
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FIG. 1. Basic measures characterizing networks and human dy-
namics. (a) Degree distribution Pk(k), and (b) link weight distribu-
tion Pw(w) for each of the four studied datasets. (c) Activity distribu-
tion PC(C). (d) The distribution Pτ(τ) of the number events between
consecutive communications, normalized by each individual’s activ-
ity level C.

about 0.7 million users, containing over 8 million messages
collected between Aug 2009 and Mar 2010 [9]. 4) Online
Messages, that records more than 500,000 messages sent by
approximately 30,000 active users of a Swedish dating site
over 492 days [2, 10].

Two widely studied quantities characterize the underlying
social networks:

Degree distribution: The degree ki(t1, t2) of an individ-
ual i represents the total number of individuals he/she con-
tacted within the [t1, t2] time interval, including both acquain-
tancy and strong ties [11]. The degree distribution Pk(k) ≡
N−1∑N

i=1 δ(k − ki) of each studied systems can be approxi-
mated with a power law [3, 4, 7] (Fig. 1a),

Pk(k) ∼ k−γk , (1)

where the degree exponent varies between γk = 1.0 for Twit-
ter and γk = 4.8 for mobile phones (Table S4). The measure-
ments indicate that for Twitter, email, and online messages γk

is independent of time, but for mobile phones decreases from
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γk = 4.19 to γk = 3.20 during a year (Pk for different time
intervals is shown in SM Section 7).

Weight distribution: Denoting with wi→ j (weight) the num-
ber of contacts between two nodes [5], we measure the weight
distribution Pw(w) ∼ ∑i, j δ(w − wi→ j) for different dataset
(Fig. 1b), finding that it can be approximated with

Pw(w) ∼ w−γw , (2)

where the weight exponent varies between γw = 1.51 for mo-
bile phones and γw = 1.9 for emails (Table S4).

To explore the dynamics of human activity we focus on two
frequently measured quantities [2, 6, 12]:

Activity distribution: Denoting with Ci(t1, t2) the activity,
representing the total number of communications initiated by
individual i within a [t1, t2] time interval, we find that the ac-
tivity distribution PC(C) ≡ N−1∑N

i=1 δ(C − Ci) is fat tailed,
following (Fig. 1c)

PC(C) ∼ C−(1+βC ), (3)

where βC ranges between 0.1 (Twitter) to 3.38 (mobile
phones) (Fig. 1c and Table S4, PC for different time intervals
is shown in SM Section 7).

Interevent time distribution: A key property of human dy-
namics is the non-Poissonian nature of the interevent time ∆t
between consecutive communication patterns [6, 13]. Previ-
ous studies have found that P∆t(∆t) ∼ ∆t−β0 , with β0 ≃ 1 (SM
Section 3.1 and Refs. [6, 13]). As P∆t(∆t) characterizes the
communications between all friends, here we define a link-
specific interevent time τi→ j as the total number of communi-
cation events initiated by user i between two consecutive com-
munications from i to j [14] (see SM Section S6.1 for more
detailed definition). We measure the probability density func-
tion Pτ,i(τ) across all individuals, finding they that all follow
broad distributions (see SM Section 6). In Fig. 1d, we plot
Pτ(τ) ≡ N−1∑

i C−1
i Pτ,i(τ/Ci) (see Fig. S7 for Pτ,i for differ-

ent Ci activity groups), finding that it is also fat-tailed, well
approximated by (Fig. 1d)

Pτ(τ) ∼ τ−(1+βτ), (4)

where βτ characterizes the inhomogeneity of the communi-
cation pattern for a pair of users, varying between 0.2 (on-
line messages) and 0.53 (mobile phones) (Table S4). Queuing
models predict, however, βτ = β0 = 0 (fixed queue length) or
0.5 (variable queue length) [6, 13].

In summary, the underlying social network is characterized
by Pk(k) and Pw(w), while the communication dynamics by
Pτ(τ) and PC(C), each with its system dependent form. These
two classes of phenomena, and the associated distributions,
are treated independently in the literature [1–6].

While one expects that the more active is an individual
(high Ci), the more friends he/she has (high ki), as shown
in Fig. 1a,d and Table S4, the distributions Pk(k) and PC(C)
are not equivalent. To understand the relationship between
ki and Ci, we measured for each individual how their degree
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FIG. 2. Measuring user sociability. (a) The growth in degree
ki(t1, t2) for ten mobile phone users in function of the same user’s
activity Ci(t1, t2) (see Fig. S3 for for the other datasets). (b) The
sociability distribution, Pα(α), for the three studied datasets, where
the shaded region highlights the tail of Pα(α). Inset: conditional
probability distribution Pα(α|C) for mobile phone users with activ-
ity C = 200, 300 and 800, respectively. (c) The collapse of Pβτ (βτ)
distributions after rescaling Pβτ (βτ) with average βτ for each datasets.

(ki) grows with the number of communication events (Ci) they
participated in. We find that the individual degree ki can be
approximated with (Fig. 2a)

ki(t1, t2) ∼ Ci(t1, t2)αi , (5)

where the exponent αi, which characterizes the individual’s
affinity to translate its level of activity into new contacts,
varies from individual to individual. For each user αi < 1,
the degree grows sub-linearly with the activity Ci, indicating
diminishing impact on the growth in the number of friends
when increasing the number of calls. This is also known as
Heaps’ law [15], a rather robust phenomenon observed in a
broad range of applications and models [6, 13, 16]. While the
temporal patterns of both ki and Ci might be affected by envi-
ronmental factors and circadian rhythms, we find that Eq. (5)
is independent of the observational time frame.

The fact that the exponent αi varies from individual to indi-
vidual indicates that users with similar activity levels acquire
degrees at different rates (Fig. 2a). Therefore, αi character-
izes an individual’s ability to add friends given his/her activ-
ity level Ci, prompting us to call αi sociability. To investigate
the demographic variation of sociability, in Fig. 2b we show
the sociability distribution for all four datasets, finding that
Pα(α) ≡ N−1∑

i δ(α − αi) is bounded between 0 and 1 and
decays rapidly on both sides of the peak. We also find that αi

is largely independent of Ci, as indicated by the conditional
probability Pα(α|C), that overlaps for users with different ac-
tivity C (Fig. 2b, inset). Somewhat surprisingly, this indicates
that sociability, i.e. the ability to establish new contacts, is
largely independent of the individual’s activity level, repre-
senting instead an intrinsic property of an individual. Figure
2b shows Pα(α) for all datasets, indicating that each commu-
nication system is characterized by its own distinct Pα(α) and
average sociability α (see Table S4).

The sociability αi is related to the dynamical exponent
βτ,i as well. Intuitively, a large βτ,i implies abundance of
repeated communications with old contacts, i.e. smaller in-
terevent time, corresponding to a slower growth (smaller αi)
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FIG. 3. Predicting the Degree Distribution The measured degree
distribution Pk(k) (solid), compared to the predictions of Eqs. (8)
(open) and (9) (cross) for (a) Email (b) Twitter (c) Online Message
and (d) Mobile Phone datasets, respectively. (e) Pk(k) for mobile
phone dataset for different time frames ∆T ≡ t2 − t1, from 1 month to
1 year (see SM Section 7 for all datasets). (f) The degree exponent
γk deceases with average activity C as predicted by (10).

of an individual degree in the social network. Indeed, it is easy
to show that these two exponents obey (see SM Section 6.2),

αi + βτ,i = 1. (6)

As shown in Table S4 (for sake of simplicity, the average α
and βτ are reported) and SM Section 6.2, the prediction (6) is
not only validated by the exponents measured in each dataset,
but also consistent with existing models [6, 13, 16]. Perhaps
most surprisingly, we find that when rescaled with the aver-
age βτ, Pβτ (βτ) for the different datasets collapse into a single
curve (Fig. 2c)

Pβτ (βτ) = (1/βτ)F(βτ/βτ), (7)

suggesting that the distribution Pβτ (βτ) of the bursty exponent
βτ captures an inherent property of the population, indepen-
dent of the means of communication. This data collapse is
quite remarkable, given the difference in the nature of the
data (calls, emails, tweets, and online messages), timeframes,
countries and demographics (phone: about 25% of an Euro-
pean country’s population [7]; emails: university employees
from a different European country [6, 8]; Twitter: mainly
US [9]; Online Messages: Swedish teenagers [2, 10]). Fig-
ure 2c suggests an exponential growth of F(x) for small x, i.e.,
F(x) ∼ exp(σx), where σ ≈ 6.6 appears to be the same for all
datasets (Table S4), a parameter that will play an important
role below.

The scaling law (5), together with the sociability distribu-
tion Pα(α) allows us to derive an another relationship between
social networks and human dynamics. Indeed, the statistical

independence between α and C implies

Pk(k) =
∫
δ(k −Cα)Pα(α)PC(C)dαdC, (8)

indicating that the fat tailed nature of the degree distribution is
rooted in the population heterogeneity in terms of sociability
αi and activity Ci. Note that this relationship is independent of
the particular form of Pk(k) and PC(C), being equally valid if
they follow power laws, stretched exponentials or log-normal
distributions. We compared the empirically measured Pk with
the prediction (8) for all datasets, obtaining excellent agree-
ment (Fig. 3a-d). Therefore, Eq. (8) links quantities describ-
ing human dynamics (PC(C)) and the social networks (Pk(k)),
capturing the competition between two phenomena:

Case 1: If Pk(k) is dominated by differences in the users’
activity level (the activity distribution PC(C)), we can ignore
the variations in Pα, replacing individual sociability (αi) with
α, finding

Pk(k) ∼ k1/α−1PC(k1/α). (9)

This limit correctly describes email, twitter, and online mes-
sages (Fig. 3a-c).

Case 2: If Pα(α) dominates, the individuals’ activity level
(Ci) can be approximated with their mean C, and Eq. (7) pre-
dicts that the sociability distribution has an exponential tail
Pα(α) ∼ exp(−ασ/β̄τ)) (shaded area in Fig. 2b) that domi-
nates the scaling of (8), obtaining

Pk(k) ∼ k−
(
1+σ/(βτ ln C)

)
. (10)

This indicates that Pk has a power law tail, whose exponent
γk is determined by variability in sociability, captured by the
parameter σ. More interestingly, it predicts that γk decreases
with the average activity level C, leading to a scaling exponent
that depends on an extensive quantity, not observed before in
network science. Indeed, as C increases with the observation
time (Fig. S2), (10) predicts a time-dependent γk, driven by
changes in C. Figure 3e-f show that despite the temporal sta-
tionarity of individual activity (Fig. S9a) for mobile communi-
cations, γk decreases with C for different time interval [t1, t2],
indicating that the degree heterogeneity of mobile phone users
is indeed driven by variability in their sociability.

Combining (3) with these two classes, we predict the degree
exponent in (1), as (SM Section 4)

γk = 1 +min
 βC

1 − βτ
,
σ

βτ ln C

 . (11)

In Table S4 we report the γC and γk of the power law model
for all datasets. Yet, Eqs. (8-10) are not limited to power laws;
other fat tailed models for PC such as lognormal or stretched
exponential can also be exploited, as discussed in SM Sec-
tion 4. The fundamental relationship (8) and the distinction
between the two classes is therefore independent of particular
models (and fits) for PC .
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FIG. 4. Quantifying the tie strength distribution. (a) Zipf’s plot
showing the communication frequency pr,i for a user i with the user’s
r-th most contacted friend for the mobile phone data (see the same
plot for other datasets in Fig. S4). (b) The plot of pr versus r1/α

showing collapses over different sociability groups, as predicted by
αiζi = 1. Similar plots are observed for the other datasets (see SM
Section 3.3). (c,d,e,f) The degree distribution Pw(w) from empiri-
cally measurements (solid), comparing to the predictions of Eq. (12)
for (c) Mobile Phone (d) Email (e) Twitter and (f) Online Message
datasets, respectively.

To derive the network’s weight distribution Pw(w) we note
that for each individual i,

∑
j wi→ j = Ci, where wi→ j denotes

the total number of messages/calls from i to j. We denote with
pr ≡ pi→ j ≡ wi→ j/Ci the probability that user i communicates
with user j, and r is the rank of pi→ j across all friends j of user
i. We find that pr is well approximated by Zipf’s law pr ∼ r−ζi
(Fig. 4a) [17], a direct consequence of the fat tailed nature of
Pw(w) [5]. That is, an individual communicates most of the
time with only a few individuals and it interacts with the rest
of its contacts with diminished frequencies. Intuitively, one
would assume ζ is the same for individuals with the same ac-
tivity C. Yet, we find that for three randomly selected users,
each with the same activity Ci = 400, pr has different ζi ex-
ponents (Fig. 4a). However, for users with different activities
but the same sociability α, the curves are indistinguishable
(Fig. 4a), hinting the existence of a link between ζi and αi.
This relationship can be derived by focusing on an individ-
ual’s least preferred contact. Intuitively, there are only a few
communications (O(1)) between the individual i and his/her
least preferred contact, independent of the activity level Ci.
Therefore, given ki, the total number of contacts of individual
i is Ci pki = Cik

−ζi
i = C1−αiζi

i = O(1), obtaining αiζi = 1, in
agreement with the previous studies [18]. Here we corrobo-
rate this relationship by showing that pr(r1/α) collapses for all
studied datasets for users with different αi and the curve has
the slope −1 for the top ranked contacts (Fig. 4b and Fig. S4).
The scaling identity αiζi = 1 allows us to derive the weight
distribution Pw(w). The weight distribution Pw(w) is averaged

over populations, as

Pw(w) =
∫ Cα∑

r=1

δ(w − A(C, α)Cr−1/α)PC(C)Pα(α)dCdα,

(12)
where the normalization factor A(C, α) ≡ A∑Cα

r=1 r−1/α with
a system-dependent constant A corresponding to the aver-
age weight. Figure 4c-f confirms the validity of Eq. (12)
for all datasets. The fact that Zipf’s law is equivalent with
Pw,i(w) ∼ w−(1+1/ζi) = w−(1+αi), where Pw,i(w) represent the
weight distribution of individual i, leads to a first order ap-
proximation of Eq. (12) as Pw(w) ∼ w−γw , where the exponent
γw = 1 + α up to the leading order. Combining this with (6),
we find

γw = 2 − βτ. (13)

The prediction (13) is supported by the empirical data in Table
S4.

In summary, Eqs. (8) – (13) offer direct links between hu-
man dynamics and the architecture of social networks, show-
ing that the degree distribution (Pk) and the tie strength distri-
bution (Pw) can be expressed in terms of the dynamical expo-
nents characterizing the temporal patterns in human activity,
like burstiness (Pτ,i) and the activity level (PC). These rela-
tionships bring an unexpected order to the zoo of exponents
reported in Table S4, showing that they represent different
facets of a deeper underlying reality. While a better under-
standing of the origin of these exponents requires mechanistic
models, tailored to the specific communication phenomena,
the relationships (8) – (13) derived here are independent of the
system’s details or the specific communication mechanism,
thus all future models that aim to account for human dynam-
ics and social networks in a specific system must obey them.
As our understanding of human dynamics deepens with the
emergence of new and increasingly detailed data on both hu-
man activity patterns and social networks, such fundamental
relationships are expected to have an increasing value, help-
ing us anchor future models and offer a springboard towards a
deeper mechanistic understanding of big data, the often noisy,
incomplete, but massive datasets that trail human behavior.
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