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S1 Data Description

We compiled four independent datasets that together capture most aspects of digital communica-

tion that humans are involved in lately:

• Mobile phone: The dataset represents one year of call patterns from 4 million anonymized

mobile phone users in 2008, consisting of ≈ 100 million calls each month [1].

• Email: The dataset is extracted from the log files of a university mail server during a period

of 83 days, consisting around 3,000 users interchanging 0.3 millon messages [2].

• Twitter: The dataset consists of 54 million users who produced a total of 1.7 billion tweets

between Sep-2006 and Aug-2009 (http://twitter.mpi-sws.org/) [3], among which we select

0.7 million users at random. This subset contained over 8 million direct user-to-user com-

munications spanning over 8 months time frame from Aug 2009 to Mar 2010.

• Online Messages: The data covers more than 500,000 messages sent during a 492 days

period among almost 30,000 members of the Swedish online community pussokram.com.

The user base is primarily composed of teenagers, of which 70% are women [4, 5].

Table S1 summarizes the ensemble sizes used to determine Pk, Pw, Pτ and PC distributions for

each dataset.

Table S1: Ensemble sizes for each distribution.
Mobile phone Email Twitter Message

Pk(k) 4,174,344 2,429 732,220 28,876
Pw(w) 53,982,936 39,256 1,923,918 174,151
Pτ(τ) 567,021,128 44,180 2,935,997 14,561
PC(C) 4,174,344 2,429 732,220 28,876
C 307.86 53.16 227.01 20.83
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S2 Corrections for Multiple Email Recipients

An important feature of email, distinguishing it from other forms of communication, is the ability

to send a message to multiple recipients at the same time. To quantify the impact of this feature on

the scaling, we define ni as the average number of recipients per email among all the emails sent

by individual i. As we show in Fig. S1a, the distribution p(n) across the user base follows a fat

tailed distribution with exponent ∼ 2.0, representing a significant population heterogeneity in the

number of email recipients. The larger ni for an individual, the more friends he/she contacts each

time. To account for this effect, Eq. (1) should be revised to

ki(t1, t2) ∼ ni(t1, t2)Ci(t1, t2)αi (S1)

where ni = 1 for phone calls/twitter/online messages in which case (S1) reduces to (1). In Fig.

S1b, we find that the growth of 〈ki/ni〉 indeed collapses for different C values, implying that the

sociability α is statistically independent of (C,n), and thus

Pk(k) =

∫
δ(k−nCα)PC,n(C,n)Pα(α)dαdndC, (S2)

where PC,n ≡N−1 ∑
i δ(C−Ci)δ(n−ni) is the joint activity/multi-recipients distribution. The validity

of Eq. (S2) is confirmed for Email dataset through numerical integration (Fig. 3A).

If the system falls in the Case 1, we can further simplify Eq. (S2) by replaing αi with the

population average α,

Pk(k) =

∫
δ(k−nCα)PC,n(C,n)dndC. (S3)

To test the validity of Eq. (S3), we measured xi = niCα
i for each email user and computed the Px(x)

distribution, finding that it indistinguishable from the empirically observed Pk (Figs. 3A, S1C).
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Figure S1: (A) The multi-recipient number distribution P(n) across the population for the email
datasets, indicating the inhomogeneous nature of email recipients. The straight line represents a
power law with exponent −2. (B) The average k(t1, t2)/n(t1, t2) vs. k for different C-value groups,
validating the scaling relationship k ∼ nCα. (C) The distribution of xi ≡ niCα

i , showing that P(x) ∼
x−βx collapses with the P(k).

If Px(x) ∼ x−βx , we have

γk = min
βx,1 +

σ

βτ lnC

 . (S4)

Again, for ni = 1 we have xi = Cα
i and βx = 1 + (βC − 1)/α, and Eqs. (S2-S4) reduce to

Eqs. (5),(6) and (8), respectively.

S3 Systematic Analysis Across All Datasets

Some results are omitted in the main text and in some cases only the results for the Mobile phone

dataset were shown for brevity. Here we present the analysis for all datasets systematically, show-

ing that the results are consistent across the whole data corpus.

S3.1 Interevent Time Distribution P∆t

To characterize the individual communication activity, we measured the interevent time distribu-

tion P(∆t) for the studied datasets (Fig. S2).
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Figure S2: The distribution P(∆t) and P(∆te) for the interevent time between two calls using the
(A) real time and (B) event time unit (normalized by the total number of users).

S3.2 〈k〉 vs. C

As shown in Eq. (S1), the degree of an individual has a power law scaling relationship with its

activity level, ki ∼ niC
αi
i , where αi characterizes the individual’s affinity to translate its level of

activity into new contacts, and ni ≥ 1 for email dataset and ni = 1 for other datasets. Figure S3

shows that in average 〈k(t1, t2)〉 ≈C(t1, t2)α.

S3.3 pr vs. r

We denote with pr ≡ pi→ j ≡ wi→ j/Ci the probability that user i communicates with user j, and r

is the rank of pi→ j across all friends j of user i. We find that pr is well approximated by Zipf’s

law pr ∼ r−ζi (Fig. 3a) [6] for the Mobile phone data. We find that for users with similar activity

level (C), their ζ exponents are different, yet pr collapses for users with similar sociability (α),

leading to the scaling relationship αiζi = 1. Figure S4 shows the results for the other three datasets,

indicating that our analysis is robust across the whole data corpus.
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Figure S3: 〈k(t1, t2)〉 ≈C(t1, t2)α for all datasets, showing the scaling relationship between k and C
is robust across all datasets.
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Figure S4: Zipf’s plot of the communication frequency pr versus r1/α of (A) Twitter, (B) Email and
(C) Online Messages, showing the data collapse over the different sociability groups, as predicted
by αiζi = 1, derived in (11). The different colors and symbols represent different activities and
sociabilities, respectively.

S4 Prediction of Degree Distribution

In this section, we offer a detailed derivation of the Pk(k) for different potential functional forms

of PC(C).

S4.1 Case 1 [Email, Twitter and Online Messages]

In the Case 1 limit Pk(k) is dominated by differences in the users’ activity level, i.e., the activity

distribution PC(C). We ignore the inherent population variability in α, hence we represent the

individuals’ sociability (αi) by its mean value α. In this case, Eq. (5) leads to

Pk(k) ∼ k1/α−1PC(k1/α), (S5)
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S4.1.1 Power law PC

Substituting PC(C) ∼C−βC into (S5), we find,

Pk(k) ∼ k−βC/αk1/α−1, (S6)

yielding,

γk = 1 +
βC

α
= 1 +

βC

1−βτ
. (S7)

S4.1.2 Log-normal PC

Substituting PC(C) ∼C−1e−(lnC−µC)2/(2σ2
C) into (S5), we find

Pk(k) ∼ k−1e−(lnk−µk)2/(2σ2
k), (S8)

where

σk = ασC (S9)

S4.1.3 Stretched exponential PC

Substituting PC(C) ∼CβC−1e−(λC x)βC into (S5), we find

Pk(k) ∼ k−(1−βk)e−(λkk)βk
, (S10)

where

βk = βC/α. (S11)

Note that the stretched exponentials are in fact power laws with cutoffs, and therefore the scaling

(S11) is actually equivalent with (S7).
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S4.2 Case 2 [Mobile Phone Calls]

In the Case 2 limit, Pk(k) is dominated by the sociability distribution Pα(α). In this case each

individual’s activity level (Ci) can be approximated with a mean C, and the tail of Pα(α) plays the

leading role. Hence the particular functional form is not relevant. Therefore, Eq. (5) leads to

Pk(k) ≈
∫
δ(k−C

α
)Pα(α)dα, (S12)

leading to

Pk(k)dk = Pα(α)dα = Pα(lnk/ lnC)d(lnk/ lnC). (S13)

As Pα(α) ∼ exp(−ασ/βτ) we find,

Pk(k) ∼ exp
(
−
σ

βτ

lnk

lnC

)
1
k
, (S14)

or

Pk(k) ∼ k−γk , (S15)

where

γk = 1 +
σ

βτ lnC
. (S16)

S5 Estimating the Fitting Parameters

Given the empirically observed fat tailed nature of the distributions, it is important to see if the

data is statistically consistent with the best fits reported in Table 1 in the main text. In this section,

we describe our procedures to obtain the reported exponents.
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S5.1 Maximum Likelihood Estimation

The Maximum Likelihood Estimation (MLE) is a powerful method to determine the fitting pa-

rameters that best describe an empirical distribution. It is especially useful when the distribution

is characterized by a fat tail, as least-squares fitting for this class of distributions are known to

often lead to systematic errors [7]. Assume that we have a sample x1, x2, . . . , xn of n data points,

and a testing model P(x|α), where α are the parameters of the model. The maximum likelihood

estimation selects the parameters α such that the following joint probability (known as likelihood

function),

L(α) ≡
n∏

i=1

P(xi|α), (S17)

is maximized. In practice it is often more convenient to work with the logarithm of the likelihood

function,

ln L(α) ≡
n∑

i=1

ln P(xi|α), (S18)

or its scaled version, the average log-likelihood

l̂(α) ≡
1
n

ln L(α) =
1
n

n∑
i=1

ln P(xi|α). (S19)

The method of maximum likelihood estimates P(x|α) by finding a value of α that maximizes l̂(α).

The error bars of the fitting parameter α can be obtained using the bootstrapping method, offer-

ing an accurate assessment of the variance of the parameter estimates [8]. To do this, we generated

a series of bootstrap resamples drawn randomly from the empirically observed histogram, and per-

formed a fitting, using the algorithms discussed above for each random sample. By measuring

the variance of the fitting parameters of these resamples, we are able to calculate the error bars

precisely.
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S5.2 Power Law Ansatz

Mathematically, a quantity x obeys a power law if it is drawn from a probability distribution

P(x) ∝ x−α, (S20)

where α is the scaling parameter of the distribution, known as the exponent. If xi ∈ [xmin,∞) are

continuous random variables, the optimization of the average log-likelihood (S19) leads to [7]

α = 1 + n

 n∑
i=1

ln
xi

xmin

 . (S21)

If, however, xi are discrete random variables, which is usually the case for empirically measured

quantities, no analytical form is applicable. Therefore in this case we applied the steepest descent

algorithm to optimize Eq. (S19) directly.

All the exponents reported in Table 1 (main text) are obtained by applying the fitting procedures

described in [7]. In Table S2, we report the power law fitting parameters of Pk(k), PC(C) and Pw(w)

for all datasets through MLE. Table S3 summarizes the fitting parameters for the Mobile phone

datasets for different time periods, where the cutoff kmin is obtained by minimizing Kolmogorov-

Smirnov (KS) goodness of fit test [7].

Table S2: Power law fitting parameters
Mobile phone Email Twitter Message

kmin 21÷40 26 1 1
γk 4.19±0.01÷3.205±0.007 2.27±0.01 1.241±0.001

KCk 0.003 0.023 0.19 0.11
Cmin 190÷1,926 57 1 1
βC 3.36±0.01÷3.39±0.01 0.82±0.01 0.147±0.001 0.430±0.002

KCC 0.02 0.046 0.15 0.11
wmin 1 1 1 1
γw 1.51335±0.00006 1.637±0.003 1.8483±0.0006 1.930±0.002

KCw 0.036 0.068 0.046 0.071
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Table S3: Fitting parameters for the Mobile phone dataset for different time frames
1-month 3-months 6-months 1-year

kmin 21 28 29 40
γk 4.19±0.01 3.67±0.01 3.391±0.005 3.205±0.007

KCk 0.0030 0.0046 0.0053 0.0032
Cmin 190 543 1,138 1,926
βC 3.37±0.02 3.46±0.02 3.53±0.02 3.39±0.01

KCC 0.020 0.018 0.018 0.022
lnC 3.39 4.31 5.03 5.73

Table S4: Quantify networks and human dynamics. The scaling exponents characterizing the
networks and human dynamics in the four studied datasets, as well as the most studied human
dynamics models. The reported α and βτ represent average values over the population for empirical
data, where βτ is measured from Pτ(τ) ∼ τ−(1+βτ) as a first order approximation. The error of βτ
and βC are derived from the error of 1 +βτ and 1 +βC , respectively. Note that the small error bars
of exponents are due to the large population size.

Mobile phone Email Twitter Message Queueing Models
Fixed Length [9] Variable Length [10]

γk 4.19±0.01÷3.205±0.007 2.27±0.01 1.241±0.001 1.624±0.003 – –
γw 1.51335±0.00006 1.637±0.003 1.8483±0.0006 1.930±0.002 – –
βτ 0.53823±0.00001 0.431±0.002 0.3162±0.0001 0.360±0.002 0 0.5
βC 3.39±0.01 0.82±0.01 0.147±0.001 0.430±0.002 – –
α 0.58±0.01 0.68±0.02 0.78±0.01 0.70±0.01 1.0 0.5
σ 6.6±0.1 6.8±0.2 6.6±0.1 6.6±0.1 – –

lnC 3.4÷5.9 4.8 5.4 3.0 – –

S5.3 Log-normal and Stretched Exponential Ansatzs

The datasets for which fat tailed distributions offer a remarkable fit can be often well fitted with

log-normal or stretched exponential distributions. Mathematically, a quantity x obeys a log-normal

distribution if it is drawn from a probability distribution,

P(x) ∝ ALN(µ,σ)−1x−1e−(ln x−µ)2/(2σ2), (S22)
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and stretched exponential if is drawn from

P(x) ∝ AS E(λ,β)−1x−(1−β)e−(λx)β , (S23)

where the normalization factors ALN(µ,σ)−1 ≡
∑∞

x=1 x−1e−(ln x−µ)2/(2σ2) and AS E(λ,β)≡
∑∞

x=1 xβ−1e−(λx)β ,

respectively.

The log-likelihood functions (S19) are

l̂LN(µ,σ) = −
1
n

n∑
i=1

(
ln xi + (ln xi−µ)2/(2σ2) + ln ALN(µ,σ)

)
l̂S E(µ,σ) = −

1
n

n∑
i=1

(
(1−β) ln xi + (λxi)β+ ln AS E(λ,β)

) (S24)

respectively. We performed the numerical maximization of l̂LN(µ,σ) and l̂S E(µ,σ) for Pk(k), PC(C)

and Pw(w) for all datasets, and reported the fitting parameters in Tables (S5-S6), finding that σk =

ασC and βC = αβk are also approximately satisfied as predicted by Eqs. (S9) and (S11).

Table S5: Log-normal fitting parameters
Mobile phone Email Twitter Message

µk 1.1382±0.0007 1.09±0.06 2.81±0.01 0.30±0.02
σk 0.8128±0.0006 1.71±0.05 1.7±0.5 1.632±0.007
KCk 0.014 0.026 0.045 0.011
µC 2.681±0.002 1.9±0.1 3.60±0.02 1.01±0.04
σC 1.297±0.002 2.40±0.07 2.24±0.01 2.02±0.02
KCC 0.039 0.040 0.052 0.023
µw −3.45085 −0.48±0.05 −1.96±0.01 −0.65±0.03
σw 3.42321 2.00±0.02 2.06±0.001 1.48±0.01
KCw 0.015 0.015 0.0030 0.0060

To compare the statistical appropriateness of the three fat tailed models (power law, log-normal

and stretched exponential in Tables S2-S6), we summarize the goodness of fit (KS measures) in

Table S7, where the bold number indicates the best and comparable fits. We find that Pk of the

mobile phone dataset is best fitted by a power law, evidenced by a remarkably small KS value

13



Table S6: Stretched exponential fitting parameters
Mobile phone Email Twitter Message

λk 0.259±0.001 0.55±0.08 0.03260±0.0005 1.4±0.1
βk 1.013±0.005 0.37±0.01 0.563±0.003 0.38±0.01
KCk 0.035 0.028 0.045 0.0029
λC 0.0410±0.0005 0.24±0.04 0.0121±0.0003 0.53±0.04
βC 0.782±0.001 0.27±0.01 0.436±0.003 0.335±0.006
KCC 0.0093 0.035 0.017 0.013
λw 8000±1000 9±1 290±30 11±1
βw 0.133±0.002 0.271±0.004 0.215±0.002 0.336±0.006
KCw 0.016 0.012 0.0016 0.0071

compared to the other models, supporting our theoretical predictions (S15). For the Email, Twitter

and Online Message datasets, the stretched exponential form offers the best fits, indicating the

fact that these distributions are best described by a power law with finite cutoff, an effect widely

recognized for social networks. Yet, despite these variations in the functional form of the best fits,

the scaling relationships (S7, S9 and S11) derived for these models are equally applicable, implying

that the underlying connections between network topology and human dynamics are independent

of the particular functional forms of the underlying data.

Table S7: Comparing KS goodness for different models
Mobile phone Email Twitter Message

Pk

Power Law 0.003 0.023 0.19 0.11
Log-normal 0.014 0.026 0.045 0.011
Stretched exponential 0.035 0.028 0.045 0.0029

PC

Power Law 0.02 0.046 0.15 0.11
Log-normal 0.039 0.040 0.052 0.023
Stretched exponential 0.0093 0.035 0.017 0.013

Pw

Power Law 0.036 0.068 0.046 0.071
Log-normal 0.015 0.015 0.0030 0.0060
Stretched exponential 0.016 0.012 0.0016 0.0071
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S6 Waiting Time Distribution

In this section, we offer a detailed discussion about the waiting time distribution Pτ,i.

S6.1 Definition

We define a link-specific interevent time τi→ j as the total number of communication events initiated

by user i between two consecutive communications from i to j [11]. For example, τA→C = 3,4,5

in Fig. S5, and we define

Pτ,i(τ) ∝
∑
j,k

δ(τ−τk
i→ j), (S25)

where the superscript k denotes the k-th communication between i and j.

C F B C E D F C B B E D C E

   (User A’s contact history)

Figure S5: The definition of τA→C , the interevent time captures communication intervals between
two individuals, A and C. Note that τA→C measures time in terms of the number of events, a feature
that corrects for daily fluctuations in the communication volume, but has the same asymptotic
scaling as the real interevent time [2].

S6.2 Pτ,i and ki(Ci)

Denote with Πi(t1, t2) the probability that individual i contacts a new friend j, representing some-

one that i did not contact in the previous [t1, t2] time frame. This requires that the waiting time τi→ j,

that characterizes the communication between i and j, be greater than Ci(t1, t2). That is, the com-

munication from i to j did not occur in any of the Ci(t1, t2) number of previous communications.
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Figure S6: (A) Heaps’ plot ki(Ci) vs. Ci for two mobile phone users. (B-C) The measured indi-
vidual waiting distribution Pτ,i(τ) (dots), compared to the predictions of Eqs. S28 (lines) for each
user. (D) αi vs. βτ,i measured for the Mobile phone dataset for users with Ci > 1000 and ki > 100,
supporting the validity of Eq. (S29).
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This implies

Πi(t1, t2) = 1−
∫ Ci

0
Pτ,i(τ)dτ =

∫ ∞

Ci

Pτ,i(τ)dτ. (S26)

On the other hand, we notice that

Πi = dki/dCi. (S27)

Comparing Eq. (S26) with Eq. (S27), we obtain the scaling relationship

Pτ,i(τ) = −
d2ki(Ci)

dC2
i

∣∣∣∣∣∣∣
Ci=τ

. (S28)

In Fig. S6, we test the validity of Eq. (S28) for two mobile phone users by comparing Pτ,i to

the numeric second derivative of Ki(Ci), demonstrating that despite the variations of Pτ,i and ki(Ci)

Eq. S28 is robust. Equation (S28) also predicts, together with Heaps’ law (1) Pτ,i(τ) ∼ τ−(1+βτ,i),

satisfying

αi +βτ,i = 1. (S29)

In Fig. S6D, we plot αi vs. βτ,i measured independently for 8,000 mobile phone users with Ci >

1000 and ki > 100, finding that while αi and βτ,i span from 0 to 1 widely they are strongly correlated,

validating Eq. (S29).

S6.3 Activity Dependence

To explore the correlation between Pτ,i and Ci, we grouped users based on their activity level Ci

and computed
〈
Pτ,iτ

〉
for each user group. Figure S1 shows that by rescaling τ with the the activity

level Ci as C−1
i

〈
Pτ,iτ

〉
and τ/Ci the obtained distributions collapse approximately into a single

curve that follows a power law (spanning over 3 magnitude) with a sharp bounded by one due to

the fact τi→ j < Ci, suggesting that
〈
C−1

i Pτ,iτ/Ci
〉

is a appropriate population average of Pτ,i (Fig.

1d).
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Figure S7: Rescaled waiting time distribution
〈
C−1

i Pτ,i(τ)
〉

vs. τ/Ci, for different activity groups
of mobile phone users.

S7 Time Evolution of the Studied Distributions

In this section, we report the time evolution of the activity and degree distributions for all datasets

and provide further empirical support for our theory.

S7.1 Activity Distribution

We generated networks for variable observation time frame for each dataset. The activity distri-

butions PC(C|t1, t2) for networks of different time frames (t1, t2) are shown in Fig. S8. We find

PC(C|t1, t2) collapses into a single curve curve for for Mobile phone, Email and Twitter datasets

(Fig. S9A-C) after rescaled C by the time window ∆T ≡ t2− t1, indicating

PC(C|∆T ) = (∆T )−1P f (C/∆T ), (S30)

where P f capturing the distribution of individual activity rate fi ≡Ci/∆T is independent of choice

of time frames, implying that the activity patterns are stationary for these three datasets. However,

the communication process of Online Message dataset is non-stationary as it breaks the time-

translation invariance (Fig. S9D). Instead we find that the Online Message dataset preserves a
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DC

Figure S8: Time evolution of PC(C) for (A) Mobile phone, (B) Email, (C) Twitter and (D) Online
Message, respectively.
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DC

Figure S9: Rescaled ∆T PC(C) vs. C/∆T for different time frames for (A) Mobile phone, (B)
Email, (C) Twitter and (D) Online Message, respectively.
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DC

Figure S10: Time evolution of Pk(k) for (A) Mobile phone, (B) Email, (C) Twitter and (D) Online
Message, respectively.

scaling invariance since PC of different time frames simply collapses and the time window ∆T

controls only the maximum activity Cmax (Fig. S8D).

S7.2 Degree Distribution

In this section, we report the time evolution of the degree distribution for all dataset and provide

further empirical support for our prediction. The degree distributions for networks of different time

frames are shown in Fig. S10.

We find that the Mobile phone dataset falls in the Case 2, evidenced by a time dependent

Pk (Fig. S10A) despite the temporal stationarity of the underlying activity process (Eq. (S30)
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and Fig. S9A). The degree distribution has a power law tail Pk ∼ k−γk for different time frames,

where the scaling regime spans from 1.5 to 2.5 order of magnitude for the various time frames. We

measured the average activity level (C) for each time frame, and looked at the relationship between

C and γk, as shown in the inset of Fig. S10A, where the dashed line represents the prediction of

Eq. (S16), finding that the empirically observed degree distribution is in good agreement with our

prediction.

The Pk of Case 1 systems (Email, Twitter and Online Message) is determined by Eq. (S5). If

the underlying activity process is stationary, by substituting Eq. (S30) we obtain

Pk(k) ∼ k−1
(

k
∆Tα

)1/α

P f

( k
∆Tα

)1/α , (S31)

indicating that the average degree follows 〈k(∆T )〉= K∆Tα, where the constant is K ≡
∫

xαP f (x)dx.

Hence,

〈k〉Pk(k) = G(k/ 〈k〉), (S32)

with the universal function

G(x) ∼ x1/α−1P f
(
(Kx)1/α

)
. (S33)

Equation (S32) indicates that Pk of stationary-activity driven systems corresponding different time

frames can be collapsed into a single master curve by rescaling k with the average degree 〈k〉,

as confirmed in Fig. S10BC for the Email and Twitter datasets. The activity pattern of the Online

Message datasets, however, is non-stationary, preserving a scaling invariance (Fig. S8D, Fig. S9D),

Eq. (S5) predicting a simple time-dependence of the degree distribution. That is, Pk from different

time frames simply collapse without rescaling where the time window ∆T affects only the maxi-

mum degree kmax, as confirmed in Fig. S10D. Moreover, the functional forms of master curves in

Fig. S10BCD are also well predicted by Eq. (S5) (see Fig. 3A-C).

Therefore, our theory correctly predicts not only the static measures, but also the temporal
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evolution of the underlying social network characteristics.
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