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Fueled by big data collected by a wide range of high-throughput tools

and technologies, a new wave of data-driven, interdisciplinary science

have rapidly proliferated during the past decade, impacting a wide ar-

ray of disciplines, from physics and computer science to cell biology and

economics. In particular, the ICT’s are inundating us with huge amounts

of information about human activities, offering access to observing and

measuring human behavior at an unprecedented level of details. These

large-scale datasets, offering objective description on human activity pat-

terns, have started to reshape, and are expected to fundamentally alter,

our discussions on quantifying and understanding human behavior. An

impressive shift has been witnessed in statistical physics and complex

system theory since the beginning of the new millennium, when the

possibility of analyzing large datasets of human activities and social in-

teractions has boosted a renewed interest in the study of human mobility

on one side, and of social networks on the other side.

The understanding of how objects move, and humans in particular,

is a longstanding challenge in the natural sciences, since the seminal

observations by Robert Brown in the 19th century, but it has attracted

particular interest in recent years, due to the data availability and to the

relevance of the topic in various domains, from urban planning and virus

spreading to emergency response. A first contribution of this chapter is

to provide a brief account of this body of research, with a focus on the

recent results on the empirical laws that govern the individual mobility

patterns: we discuss how the key variables of people’s travels (such as

length, duration, radius of gyration, ...) follow universal laws, validated

against different datasets of real observations. We also discuss how pre-

dictable people’s movements are, illustrating recent findings indicating

that the high degree of predictability of human motion is a universal
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characteristic of every individual, despite the wide variety of individual

whereabouts.

Next, we move from individuals to interactions — links — among in-

dividuals, and enter the domain of social network analysis. An extraor-

dinary effort has been devoted to understanding the interconnectedness

of individuals, i.e., the structure of the social networks we inhabit, and

how this structure influences social phenomena, such as the importance

of certain individuals or groups, the diffusion of information or the for-

mation of communities. The second contribution of this chapter is to

provide a brief account of the key findings of network science so far

(what are the distinctive features of real social networks compared to

random networks, how the community structure of real networks models

the fabric of society, what are the mechanistic processes that generates

realistic networks), to the purpose of discussing the recent results on

how human mobility shapes and impacts social relations, and the other

way around. Again, empirical laws were found that offer quantitative

accounts of the intuition that people from the same social circles tend

to co-locate in space and time more than people that are far apart in

the social network. Building on this relation among social and mobility

variables, it is possible to shed more light on how social networks (and

mobile behavior) evolves over time.

We believe that the results surveyed in this chapter, about individual

mobility laws and the relations between social ties and mobility, should

become basic tools for research in various disciplines, and we envisage

that the convergence between data mining research and network science

research, already apparent in some of the works discussed here, will

represent a strong trend in the near future, aimed at combining the

analytical power of statistical physics and knowledge discovery.

1.1 Models of human mobility

We live in an era in which understanding individual mobility patterns

is of fundamental importance for epidemic preventions and urban and

transportation planning. Yet, human movements are inherently massive,

dynamical, and complex. Indeed, on one hand, aided by modern trans-

portation technologies, we can now travel to any place on the globe in

just a day or two. On the other hand, while the mobility of our fellow

species is mainly governed by mating needs and food resources, human

mobility is fundamentally driven by ourselves, from job-imposed restric-
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tions and family related programs to involvement in routine and social

activities. Therefore, quantifying the regularities and singularities be-

hind human movements had remained as a often elusive goal. Thanks

to the availability of large-scale datasets generated by various domains

of modern technologies, ranging from registration of dollar bills to mo-

bile phone services and GPS devices to location based websites, we have

witnessed a proliferation of studies on human mobility.

In this section, we will start from the most fundamental models for

motions, rooting back to the 19th century. We will then describe several

empirical observations of human mobility and the new generation of

mobility models, presenting to what extent real human mobility patterns

deviate from those expected from simple diffusion processes.

1.1.1 Motion models: Brownian motion and Lévy flights

In 1827, while he was studying sexual relations of plants, botanist Robert

Brown noticed that granules contained in grains of pollen were in con-

stant motion, and that this motion was not caused by currents in the

fluid or evaporation. He thought at first that they were jiggling around

because they were alive or because of the organic nature of the matter.

So, he did the same experiment with dead organic and inorganic matter

finding there was just as much jiggling. The movement evidently had

nothing to do with the substance ever being alive or dead, and this left

him and his contemporaries with a puzzling question: What is this mys-

terious perpetuum motion that keeps the pollen moving?

A possible explanation for the so-called Brownian motiona, is that all

the molecules in the fluid are in vigorous motion, and these tiny gran-

ules are moved around by this constant battering from all sides as the

fluid molecules bounced off. Imagine we are in the middle of a crowd

and there is a big balloon. As the individuals move around, they push

the balloon from all directions: sometimes the balloon will move to the

left, occasionally to the right, overall displaying a random, jittery mo-

tion like paths in Figure 1.1. A particle of pollen behaves like a really

huge balloon in the midst of a dense crowd.

Such atomic-molecular thesis was guessed by Einstein, who in 1905

published a theoretical analysis of Brownian motion and showed that

the mean distance reached by particles from the first collision point must

a The first observation of Brownian motion was reported in 1785 by the Dutch
physician Jan Ingenhaysz. However, Brown was the first to discover the ubiquity
of the phenomenon.
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Figure 1.1 Some examples of Brownian motions.

grow with the square root of time. It means, for example, that after 4

seconds, the distance is only twice (
√

4 = 2) the one found after a second,

and not four times as insight would suggest. Einstein’s calculations were

confirmed experimentally in 1908 by physicist Jean Baptiste Perrin, who

convinced even the most skeptical about the validity of atomic-molecular

hypothesis.

Before Einstein, Louis Bachelier derived independently several math-

ematical properties of Brownian motion, including the equation for the

probability P (x, t) for the position x of a Brownian random walker at

time t, when the walker starts as the origin at time t = 0. The equation

for P (x, t) in one dimension is given by the diffusion equation, with a

Gaussian solution. Therefore, a Brownian motion is basically a random

walk with a normal distribution for the position of the random walker

after a time t, with the variance proportional to t. It means that random

walkers tend to travel roughly the same distance between sightings.

However, there are situations in which equations for Brownian motion

are no longer applicable. An example occurs if the jumps are of very large

distances: this is the case of some animal movements. Measurements on

albatrosses, monkeys and marine predators, suggested that animal tra-

jectories are different from the Brownian motion, and they are better

approximated by the so-called Lévy-flight. The French mathematician

Paul Lévy investigated in the 1930’s the mathematics of random walks
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with infinite moments. A random walk of N steps is a sum of N indipen-

dent and identically distributed random variables with mean µ = 0 and

variance σ2, that is SN = X1 +X2 + . . .+XN . Lévy posed the following

question: when the probability distribution PN (x) of the sum of N steps

have a similar form as the probability distribution of a single step p(x)?

For walks with finite jump variances, the central limit theorem implies

that the overall probability PN (x) is a Gaussian. For infinite variance

random walks, the Fourier transform of p(x) has the form p̄(k) = e−|k|
β

with β < 2. The Gaussian distribution (Brownian motion case) corre-

sponds to β = 2, and the Cauchy distribution corresponds to β = 1.

Therefore Lévy-flights are a generalization of Brownian motions (Figure

1.2).

Figure 1.2 Brownian motion (black curve) is describe as a random
walk in which all the steps give the same contribution. Lévy-flight
(red curve) occurs when the trip is dominated by a few very large
steps.

When the absolute value of x is large, p(x) is approximately |x|−(1−β),
which implies that the second moment of p(x) is infinite when β < 2.

This means that there is no characteristic size for the random walk

jumps, except in the Gaussian case of β = 2. It is just this absence of a

characteristic size the makes Lévy random walks scale-invariant fractals.
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1.1.2 Human mobility patterns

Are human movements similar to those of grains of pollen, following

a Brownian motion, or are they governed by Lévy-flight, like marine

predators and monkeys? Or do they follow their own laws? To answer

above questions, we need to observe humans under a microscope, like

Perrin observed atoms and was able to experimentally confirm Einstein’s

theory. The technological era, at last, allows us to track human mobil-

ity and to test models, thanks to the exploding prevalence of mobile

phones, GPS, and other handheld devices. Such devices are our social

microscopes.

In 2006, Dirk Brockmann and his colleagues proposed using the geo-

graphic circulation of bank notes in the United States as proxy for hu-

man traffic, based on the idea that individuals transport money as they

travel. They analyzed data collected at the largest online bill-tracking

Website www.wheresgeorge.com, and found that most bills remain in

the vicinity of their initial entry, yet a small but a significant number

have traversed distances of the order of the size of USA (Figure 1.3), con-

sistent with the intuitive notion that short trips occur more frequently

that long ones. Brockmann’s team calculated that the probability P (r)

Figure 1.3 Short time trajectories of dollar bills in the United States.
Lines connect origin and destination locations of bank notes that
traveled for less than a week. Figure from Brockmann et al (2006).

of a bank note traversing a distance r follows a power law:

P (r) ∼ r−(1+β) (1.1)

with an exponent β ≈ 0.6. Moreover, they found that the typical distance
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X(t) from the initial starting point as a function of time is a power law:

X(t) ∝ t1/β . (1.2)

As we know, for Brownian motion the distance X(t) scales according

to the square-root law. For a power law the variance diverge for ex-

ponents β < 2 and it implies that bank note dispersal lacks a typical

length scale resembling Lévy-flights. Lévy-flights are superdiffusive; they

disperse faster than ordinary random walks. This discovery was a major

breakthrough in understanding human mobility on global scales. In light

of this discovery, in dispersal humans are similar to animals.

However, our intuition suggests that we do not move completely ran-

dom. There are regularities in our lives: most of us have a home, a work,

an hobby. These activities necessarily shape our trajectories. Instead, if

we do follow a pure Lévy flight we rarely find our way back home, but

our position increasingly moves away from the initial one.

To further investigate human mobility patterns, in 2008 Barabási and

his team analyzed the trajectory of 100,000 anonymized mobile phone

users whose position is tracked for a six-month period. Contrary to bills,

mobile phones are carried by the same individual during his daily rou-

tine, offering the best proxy to capture individual human trajectories.

An immediate result of the research was that the distribution of dis-

placements ∆r between user’s positions at consecutive calls is well ap-

proximated by a truncated power-law:

P (∆r) = (∆r + ∆r0)−βexp(−∆r/κ) (1.3)

with exponent β = 1.75 ± 0.15, ∆r0 = 1.5 km and some cutoff values

κ. Such equation suggests that human motion follows a truncated Lévy-

flight, apparently confirming in a certain way observations on bank notes.

However, differences from randomness emerge from other measures. The

distribution P (rg) of radius of gyration rg, the characteristic distance

traveled by a user when observed up to time t, also follows a power law,

in contrast with random walks (Figure 1.4, left). So, most people usu-

ally travel in close vicinity to their home location, while a few frequently

make long journeys. Furthermore, the probability Fpt(t) that a user re-

turns to the position where he was first observed after t hours shows

several peaks at 24 h, 48 h and 72 h (Figure 1.4, right), capturing the

recurrence and temporal periodicity inherent to human mobility.

The most important result was the finding that, after appropriate rescal-

ing aiming to remove the anisotropy and the rg dependence, all individ-

uals seem to follow the same universal probability distribution Φ̃(x̃, ỹ)
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Figure 1.4 The distribution P (rg) of the radius of gyration measured
for the users. The solid line represents a similar truncated power-law
fit. The dotted, dashed and dot-dashed curves show P (rg) obtained
from random walk, pure and truncated Lévy flights models. The pic-
ture on the right shows that the prominent peaks capture the ten-
dency of humans to return regularly to the locations they visited
before, in contrast with the smooth asymptotic behavior (solid line),
predicted for random walks. Figure from González et al (2008).

that an individual is in a given position (x, y) (Figure 1.5 b). Individuals

display significant regularity, returning to a few highly frequented loca-

tions, such as home or work. This regularity does not apply to the bank

notes: a bill always follows the trajectory of its current owner; that is,

dollar bills diffuse, but humans do not.

Song et al. extended the experiment to a larger dataset and measured

the distribution of the visiting time (the interval ∆t a user spends at

one location). The resulting curve is well approximated by a truncated

power-law with an exponent β = 0.8 ± 0.1 and a cutoff of ∆t = 17 h,

witch the authors connected with the typical awake period of humans.

The number of distinct location S(t) visited by humans is sublinear in

time, well approximated by S(t) ∼ tµ with µ = 0.6±0.02, that indicates

a decreasing tendency of people to visit previously unvisited locations.

Moreover, the visitation frequency, that is the probability f of a user to

visit a given location, is rather uneven, resulting in a Zipf-like visitation

frequency distribution P (f) ∼ f−(1+1/ζ).

1.1.3 Predictability of human mobility

What is the role of randomness in human behavior and to what degree is

human behavior predictable? This question is crucial, because the quan-



1.1 Models of human mobility 9

Figure 1.5 a, The probability density function Φ(x, y) of finding a
mobile phone user in a location (x, y) in the user’s intrinsic reference
frame. The three plots, from left to right, were generated for 10, 000
users with: rg ≤ 3, 20 ≤ rg ≤ 30 and rg > 100 km. The trajecto-
ries become more anisotropic as rg increases. b, After scaling each
position, the resulting probability distribution has approximately the
same shape for each group. Figure from Song et al (2009).

tification of the interplay between the predictable and the unforeseeable

is very important in a range of applications. From predicting the spread

of human and electronic viruses to city planning and resource manage-

ment in mobile communications, our ability to foresee the whereabouts

and mobility of individuals can help us to improve or save human lives.

In 2009, Song et al. provided a quantitative evaluation of the limits

in predictability for human walks, using a 3-month-long mobile phone

dataset of about 50, 000 individuals. The authors defined three entropy

measures: the random entropy Srandi in the case of location visited with

equal probability; the entropy Sunci that depends only on frequencies

of visits; and the real entropy Si that considers the probability of find-

ing particular time-ordered subsequences in the trajectory. To charac-

terize the predictability across the user population, they determined

these three entropies per each user i, and calculated the distributions

P (Srandi ), P (Sunci ) and P (Si), i.e. the frequency of entropy values. As

shown in Figure 1.6A, P (Si) has a peak in S = 0.8 indicating that the

real uncertainty in a typical user’s whereabouts is 20.8 ≈ 1.74. It means

that a user who chooses randomly his or her next location could be found
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on average in two locations. A big difference emerges in respect to the

random entropy, for which the peak at S = 6 implies 26 ≈ 64 locations.

Figure 1.6 (A) The distribution of the entropies S, Srand and Sunc

across 45, 000 users. (B) The distribution of Πmax, Πrand and Πunc

across all users. (C). The dependence of Πmax on the user’s radius
of gyration rg. For rg > 10 km, Πmax is largely independent of rg.
(D). The fraction of time a user spends in the top n most visited

locations, the resulting measure Π̃ representing an upper bound of
predictability Πmax. Figure from Song et al (2009).

To represent the fundamental limit for each individual’s predictability,

Song et al. defined the probability Π that an appropriate algorithm can

predict correctly the user’s future whereabouts. If a user with entropy

S moves between N locations, then his predictability is bounded by the

maximal predictability Πmax(S,N). For a user with Πmax = 0.2, this

means that, no matter how good the predictive algorithm is, only in the

20% of the time can we hope to predict his whereabouts. They deter-

mined Πmax separately for each user and found that the distribution

P (Πmax) is peaked around Πmax ≈ 0.93. Figure 1.6B highlights that

Πrand and Πunc are instead ineffective predictive tools.

Despite the apparent randomness of the individual’s trajectories, in

a historical record of the daily mobility pattern of the users there is a

potential 93% average predictability in user mobility, an exceptionally

high value rooted in the inherent regularity of human behavior. The most

surprising is the lack of variability in predictability across the popula-
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tion, obtained by explored impact of home, language groups, population

density and rural versus urban environment. Although the population

has an inherent heterogeneity, the maximal predictability Πmax varies

very little, there are no users whose predictability would be under 80%.

Knowing the history of a person’s movements, advanced pattern min-

ing techniques described in chapters 6 and 7 can be used to find patterns

and regularities in human mobility, and to foresee his current location

with extremely high success probability.

1.2 Social networks and human mobility

In the previous section we presented the evolution of the study on human

mobility, describing the main patterns and models that characterize the

mobility behavior of individuals. Here, we make a step further in our

journey of understanding human behavior by focusing on the interplay

between human mobility and social networks, with the purpose of high-

lighting to what extent human movements affect social dynamics, and

how social interactions influence the way people move.

We will first present a brief overview of network science and its growth

in the last decade, and then we will focus on the recent developments

and discoveries regarding the interplay between the social world and the

mobility of people.

1.2.1 Introduction to network science

Network science is a truly interdisciplinary field that examines the inter-

connections among diverse physical, engineered, information, biological,

cognitive, semantic and social systems. In mathematical terms a network

is represented by a graph G = {V,E}, where V is a set of n nodes and

E is a set of edges that connects V . According to the definition, any

system of interacting elements can be represented as a network. The

thinking of complex networks was traditionally dominated by random

graph theory, first proposed by Erdös and Rényi back to 1950s. The

random graph model presented a simple realization of a network: we

start with N disconnected nodes, and randomly connect every pair of

nodes with probability p, yielding a graph with pN(N − 1)/2 edges. As

data regarding wiring diagrams of real systems started being collected

by computer programs in late 1990s, topological information of real net-

works became increasingly available, prompting many scientists to ask
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a fundamental questions: are real networks, from cell to Internet, truly

random? Over the past decade, we have witnessed dramatic advances

along this direction, leading to the discovery that despite the intrinsic

distinctions in the nature and functionality of the nodes and their inter-

actions, many real world networks follow highly reproducible patterns.

There are three most studied properties that characterize a real network:

Average path length measures the average steps it takes for one

node to reach another node in the network, also commonly referred as

diameter of a network. Although real networks often consist of a large

number of nodes, they have a very small diameter, which is most known

as the “small world” property or “Six degrees of separation”. That is,

individuals on the planet were separated by six degrees of social con-

tacts. Despite its simplicity, the random graph model well captures this

property, predicting the average path length d ∼ lnN , where N is the

size of the network.

Clustering represents densely connected cliques in a network, which

was formally quantified by Watts and Strogatz. They introduced cluster-

ing coefficient Ci for node i, that measures the fraction of neighbors of

i are also connected to each other. In random graph model, as links are

distributed randomly among the nodes, it predicts Ci = p. Yet in almost

all real networks, the clustering coefficients are significantly higher than

the random graph model prediction. To capture the pervasive clustering

phenomena, Watts and Strogatz introduced the small-world model, also

known as the WS model: start from a regular network, for instance a

ring, in which each node is connected to its k nearest neighbors. Let

us redirect links with probability p, moving one end of an edge to a

new location chosen uniformly at random from the lattice. When p = 0,

the network is regular lattice, thus characterized by a very high cluster-

ing coefficient but a large average path length. On the other end, when

p = 1, the network is equivalent to a random graph. As we start to in-

crease p from 0 to 1, the diameter of the network quickly shrinks, while

the cluttering coefficients remain roughly the same. Therefore, for a wide

range of p, WS model gives rise to networks with both high clustering

coefficients and small diameter.

Degree distribution, P (k), measures the probability that a ran-

domly selected node has k edges. The random graph model predicts P (k)

follows a Poisson distribution, corresponding to a homogeneous network,

where every node has roughly the same degree around 〈k〉. However, a

variety of real networks, spanning from the Internet and WWW to scien-

tific citations and actor collaborations, exhibit the ‘scale-free’ property,
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a highly reproducible pattern not accounted for by either random graph

model or WS model. That is, P (k) follows a power law P (k) ∼ k−γ . This

result indicates that real networks are rather heterogeneous: most nodes

in the network have very low degree, while there are a notable number

of nodes with a large number of connections. Think about Yahoo! for

the Web, ATP protein for metabolic networks, and Heathrow for air

traffic network. To explain the possible origin of the observed scale-free

property, Barabási and Albert introduced the scale-free model (or BA

model) by viewing the network as a dynamical object that evolves with

addition of nodes and links to the system, in strong contrast to the static

models that dominated the literature before. Imagine an initial network

of a small number of nodes m0. At each time step we add a new node

with m edges that link the node to m different vertices already present

in the network. The probability that a new node will be connected to

node i depends on the connectivity ki of that node. After t time steps

the model leads to a network with t + m0 nodes and mt edges. This

network evolves into a scale-invariant state with the probability that a

node has k edges following a power law with exponent γ = 3.

In addition to the measures listed above, the concept of tie strength

has attracted particular attention in the study of social networks. It

was introduced by sociologist Mark Granovetter in 1973 as a “combina-

tion of the amount of time, the emotional intensity, the intimacy (mutual

confiding) and the reciprocal service which characterize the tie”. He pro-

posed a model of society consisting of small and fully connected circles

of friends, linked by strong ties. Weak ties connect the members of these

intimate circles to their acquaintances, who have strong ties to their own

friends. Since weak ties act as bridges between separate “social micro-

worlds”, they play a crucial role in any number of social activities, such

as the spreading of information, ideas and diseases, or in finding a job.

Conversely, strong ties link persons in intimate and tight communities,

affecting emotional and economic support.

The existence of a local coupling between tie strengths and network

topology is confirmed by recent research, which exploit the huge quan-

tity of human interactions recorded by modern tools and technologies.

A study conducted by Onnela et al. analyzed a huge dataset that stores

the mobile phone interaction of millions of individuals in a time period

of 18 weeks. The researchers inferred a social network from data con-

necting two users with a link if there had been at least one reciprocated

pair of phone calls between them, and defining the strength of a tie

as the aggregated duration of calls. Consistent with the Granovetter’s
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hypothesis, the majority of the strong ties were found within highly con-

nected communities, indicating that users tend to talk for most of their

time with the members of their immediate circle of friends. In contrast,

most links connecting different communities were weaker than the links

within the communities. Moreover, as a consequence of the topological

structure of the network, removing the weakest links leads to a rapid

network’s sudden disintegration, while removing first the strongest ties

shrinks the network but will not precipitously break it apart.

The interesting findings discovered by the above cited study, together

with that of more recent works, confirm the importance of tie strength

in study of networks, suggesting that weak and strong ties play a dif-

ferent but crucial role in the understanding of many dynamic processes

regarding our society.

1.2.2 Interplay between human mobility and social

networks

Recent advances on human mobility and social networks have turned the

interplay between these two aspects into a crucial missing chapter in our

understanding of human behavior. To make progress along this direction

requires large-scale data that simultaneously capture the dynamical in-

formation on individual movements and social interactions. Thanks to

the increasing availability of Mobile phone datasets and location-based

online social networks (LBSN, see also Chapter 16), scientists start to

look into the questions of to what extent human mobility patterns shape

and impact our social ties, and how do our social surroundings affect

where we go? The central hypothesis here is that social interactions

increase with physical proximity. Indeed, social links are often driven

by spatial proximity, from job- and family-imposed shared programs to

joint involvement in various social activities. These shared social foci

and face-to-face interactions, represented as overlap in individuals tra-

jectories, are expected to have significant impact on the structure of

social networks. There are three lines of inquiry in current literature:

(1) geographic propinquity yields higher probability of forming a tie;

(2) overlap in trajectories predicts tie formation; (3) Social environment

affects individual mobility.

Geographic propinquity

The considerable influence of the geographic distance on the formation,

the evolution and the strength of friendships is probably rooted in the
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very nature of our social brain. According to the anthropologist Robin

Dunbar, there is a physical cognitive limit in the number of strong ties

our brain is able to manage, partly because they must be powered by

a form of social grooming, a time-consuming activity mainly based on

geographical proximity and face-to-face contacts.

Recent analysis on Facebook and email data confirmed Dunbar’s in-

tuition, showing that the volume of communications is inversely propor-

tional to geographic distance and that the probability P (d) of having a

friend at a certain distance decrease following a sort of “gravitational

law”. Although in the last decades technology has contributed to reduce

distances, proximity is still important for the establishment of relevant

relationships, breaking down the illusion of living in “a global village”:

a small world in which physical and cultural distances vanish and where

lifestyle become homogeneous.

In studying the social vs geography problem, data from LBSNs proved

to be very useful. Scellato et al. used information from both the social

and location components of several LBSNs to identify the relation be-

tween friendship and geographic distance. They noticed a weak positive

correlation between the number of friends and their average distance,

and observed that the socio-spatial structure of the users can not be

explained by taking into account separately geographic factors and so-

cial mechanisms. Cranshaw et al. studied the entropy related to LBSNs

locations in order to understand how it affect the underlying social net-

work. They found that co-locations at high entropy locations are much

more likely to be random occurrences than co-locations at low entropy

locations. So, if two users are only observed together at a locations of

high entropy (for example a shopping mall or a university), they are less

likely to actually have a link in the underlying social network than if

they are observed in a place of low entropy. Moreover, users who visit

locations of higher entropy tend to be more social, having more ties in

the social network than users who visit less diverse locations.

Trajectory overlap

Given that two persons have been on multiple occasions in the same

geographic place at the same time, how likely are they to know each

other? This is another interesting and open problem about the interplay

between sociality and mobility, regarding to which extent social ties

between people can be inferred from co-occurrence in time and space.

Crandall et al. studied such problem by analyzing a huge dataset from

the popular photo sharing site Flickr, reaching interesting and striking
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conclusions. They inferred a spatiotemporal co-occurrence between two

Flickr users if they both took photos at approximately the same place

and at approximately the same time. Rather surprisingly, they found

that even a very small number of co-occurrences can lead to orders-of-

magnitude greater probabilities of a social tie. Indeed two users have

nearly 5,000 times the baseline probability of having a social tie on

Flickr when they have just five co-occurrences in a day in a 80 km range

of distance. With the aim of a deeper understanding of the underly-

ing phenomenon, they developed a mathematical model in which the

probabilities of friendship as a function of co-occurrence qualitatively

approximate the distributions they observed in the Flickr data.

Wang et al. presented a data mining approach to the question of to

what extent individual mobility patterns shape and impact the social

network. Following the trajectories and communication patterns of ap-

proximately 6 Million mobile phone users over three months, they de-

fined three group of similarity measures: mobile-homophily (similarity

in trajectories), network proximity (distance in the call graph) and tie

strength (number of calls between two users). Exploring the correlation

between these measures, researchers discovered that they strongly cor-

relate with each other. The more similar two user’s mobility patterns

are, the higher is the chance that they have close proximity in the so-

cial network, as well as the higher is the intensity of their interactions.

Starting from these results, they designed a link prediction experiment,

constructing the entire repertoire of both supervised and unsupervised

classifiers, based either on network and/or mobility quantities. Results

showed that mobility on their own carry high predictive power, compara-

ble to that of network proximity measures. By combining both mobility

and network measures, in the supervised case authors obtained that only

approximately one fourth of the predicted new links were false positives,

and only one third of the actual links were missed by the predictor.

The results of the study by Wang et al. suggest that Granovetter’s

theory should be integrated with a “mobility” dimension: as we can

notice in Figure 1.7 the strength of a tie is correlated not only to social

proximity (the extent to which people share the same community) but

also to their mobility behavior (the overlapping of their spatiotemporal

trajectories).

Social environment affects individual mobility

Leskovec et al. investigated the interaction of the person’s social network

structure and their mobility using datasets that capture human move-
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Figure 1.7 Correlations between mobility measures and Adamic-
Adar coefficient (left), tie strength (right). The proximity measure
used are the spatial co-location (CoL) and the spatiotemporal co-
location (SCos) inferred from the trajectories of the users. Figure
from Wang et al (2011).

ments from Gowalla, Brightkite and phone location trace data. Since

they uncovered a surprising increase of the effect of distant friends on

an individual’s mobility, they tried to understand if friendships influence

where people travel, or if it is more traveling that influences and shapes

social networks. In order to measure the degree of causality in each di-

rection, they downloaded the Gowalla social network at two different

time points t1 and t2, three months apart. Considering friendships at

time t1, they calculated a set of checkins Ca that occurred after time t1
and quantified the influence of sociality on future movements by measur-

ing what fraction of them occurred within the vicinity of friend’s homes.

Similarly, researchers examined the influence of mobility on creating new

social ties by examining a set of checkins Cb before time t1 and counted

the fractions of checkins led to creation of new friendships. They found

that whereas there is, on average, a 61% probability that a user will

visit a home of an existing friend, the probability that a checkin will

lead to a new friendship is only 24%. Such results were confirmed in

phone call data, with the influence of friendship on individual’s mobil-

ity about 2.5 times greater than the influence of mobility on creating

friendships. Moreover, data also display a strong dependency between

probability of friendship and trajectory similarity, suggesting the there

is a strong presence of social and geographical homophily.

The most interesting aspect of such main findings in the interplay be-

tween sociality and mobility, is that they can be used to develop a model

of human mobility dynamics combining the periodic daily movement
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patterns with the social movement effects coming from the friendship

network.

1.3 Data mining and network science: a vision of
convergence

We have discussed in this chapter how the tools of statistical physics and

complexity science have been applied to the study of human mobility,

both focusing on individual movements and considering also the social

relations among individuals. We have observed how, in both cases, gen-

eral laws can be devised and empirically validated based on the newly

available mobility data, shedding a new light on the underlying mech-

anisms behind phenomena that, at first sight, seem to be governed by

chaos.

We conclude with an observation that spontaneously emerges from

the current trend of research, as presented here: there is an evident push

towards the convergence of network/complexity science and data mining

research, a progressive merge of the two scientific communities that is

only beginning today, but it is steadily increasing due to the advantages

of combining the complementary strengths and weaknesses of the two

approaches. Why this merge is convenient?

We learned in this chapter that statistical physics and network science

are aimed at discovering the global models of complex social phenom-

ena, by means of statistical macro-laws governing basic quantities; the

ubiquitous presence of power laws and other long tailed distributions

witness the behavioral diversity in society at large, such as the huge

variability and individual differences of human movements. On the other

hand, data mining is aimed at discovering local patterns of complex so-

cial phenomena, by means of micro-laws governing behavioral similarity

or regularities in sub-populations, such as the mobility patterns and

clusters discussed in Chapters 6 and 7 of this book. This dualistic ap-

proach is illustrated in Figure 1.8. In the overall set of individual trajec-

tories across a large city we observe a huge diversity: while most travels

are short, a small but significant fragment of travels are extraordinarily

long; therefore, we observe a long-tailed, scale-free distribution of quan-

tities such as the travel length and the users’ radius of gyration. Despite

this complexity represented in the data, mobility data mining can auto-

matically discover travel patterns corresponding to set of travelers with

similar mobility: in such sub-populations the global diversity vanishes
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Figure 1.8 The GPS trajectories of tens of thousand cars observed for
one week in the city of Milan, Italy, and the power-law distribution
of users radius of gyration and travel length (left); the work-home
commuting patterns mined from the previous dataset by trajectory
clustering and the normal distribution of travel length within each
discovered pattern (right).

and similar behavior emerges. The above dual scenario of global diver-

sity (whose manifestation is the emergence of scale-free distributions)

and local regularity (within clusters, or behavioral profiles) is perceived

today as the signature of social phenomena, and seems to represent a

foundational tenet of computational social sciences. Although network

science and data mining emerged from different scientific communities

using largely different tools, we need to reconcile the macro/global ap-

proach of the first with the micro/local approach of the second within a

unifying theoretical framework, because each can benefit from the other

and together have the potential to support realistic and accurate models

for simulation and what-if reasoning of social phenomena. This vision

of convergence among computer science, complexity science and the so-

cial sciences is shared today by large research initiatives, such as the

FuturICT programb.

b http://www.futurict.eu
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1.4 Bibliographic notes

Erdös and Rényi (1959) is the seminal paper that introduced random

graphs. The famous small-world model was presented in Watts and

Strogatz (1998), while the first argumentations on the small-world phe-

nomenon and the cliquishness nature of society, can be found respec-

tively in Milgram (1967) and Granovetter (1973). The scale-free model

was introduced firstly in Barabási and Albert (1999).

The analysis of human mobility based on dollar movements can be

found in Brockmann et al (2006). In González et al (2008), are de-

scribed the mobility patterns discovered by analyzing a rich mobile

phone dataset, a work later extended in Song et al (2010). Limits on

predictability of human mobility are presented in Song et al (2009),

while Karamshuk et al (2011) classifies mobility patterns in temporal,

social and spatial dimensions. Cranshaw et al (2010) studies the entropy

related to LBSN locations in order to understand how it affect the un-

derlying social network. Crandall et al (2010) analyzed a dataset from

Flickr and discovered that even a small number of co-occurrences lead

to high probability of a social tie. Wang et al (2011) presents a data

mining approach to the question of to what extent individual mobility

patterns shape and impact the social network. In Leskovec et al (2011),

authors investigate the interactions between social network and mobility

by analyzing datasets from location based social network and a mobile

phone network.
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